RPS Degree College, Balana (Mahendergarh) esson Plan

Section: P So Non Medical 3rd Som		
Subject: Inorganic Chemistry		
Lecture	Topics	
1	Introduction to Syllabus	
2	Werner coordination theory	
3	Werner coordination theory	
4	Werner coordination theory	
5	Effective Atomic Number	
6	Effective Atomic Number	
7	Effective Atomic Number	
8	Effective Atomic Number	
9	Nomenclature of Coordination compound	
10	Nomenclature of Coordination compound	
11	Nomenclature of Coordination compound	
12	Nomenclature of Coordination compound	
13	Nomenclature of Coordination compound	
14	Isomerism in coordination compound	
15	Isomerism in coordination compound	
16	Isomerism in coordination compound	
17	Isomerism in coordination compound	
18	Valence bond theory	
19	Valence bond theory	
20	Valence bond theory	
21	Valence bond theory	
22	Physical properties of solvents	
23	Physical properties of solvents	
24	Physical properties of solvents	
25	Types of solvents	
26	Types of solvents	
27	Reaction in liq NH3 as a non aqueous solvent	
28	Reaction in liq NH3 as a non aqueous solvent	
29	Reaction in liq NH3 as a non aqueous solvent	
30	Reaction in liq SO2 as a non aqueous solvent	
31	Reaction in liq SO2 as a non aqueous solvent	
32	Reaction in liq SO2 as a non aqueous solvent	
33	Reaction in liq SO2 as a non aqueous solvent	
34	Defination of transition elements, position in the periodic table	
35	General Characteristic of first row transition elements	

36	General Characteristic of first row transition elements
37	General Characteristic of first row transition elements
38	General Characteristic of first row transition elements
39	Structure and properties of TiO2
40	Structure and properties of TiO2
41	Structure and properties of VOC12
42	Structure and properties of VOC12
43	Structure and properties of FeC13
44	Structure and properties of FeC13
45	Structure and properties of CuCl2
46	Structure and properties of CuCl2
47	Structure and properties of Ni(CO)4
48	Structure and properties of Ni(CO)4

RPS Degree College, Balana (Mahendergarh)

sson Plan Class : B.Sc. Non Medical 3rd Sem Subject : Organic Chemistry

Lecture	Topics
1	Introduction of Syllabus
2	Alcohols Classification and nomenclature. Monohydric alcohols
3	Nomenclature, methods of formation by reduction of aldehydes
4	Ketones, carboxylic acids and esters.
5	Hydrogen bonding. Acidic nature.
6	Reactions of alcohols.
7	Dihydric alcohols — nomenclature,
8	methods of formation,
9	Chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc) 4 and HIO 4]
10	Pinacol- pinacolone rearrangement
11	CLASS TEST
12	Phenols Nomenclature, structure and bonding
13	Preparation of phenols,
14	Physical properties and acidic character
15	Comparative acidic strengths of alcohols and phenols
16	Resonance stabilization of phenoxide ion.
17	Reactions of phenols — electrophilic aromatic substitution
18	Acylation and carboxylation.
19	Mechanisms of Fries rearrangement
20	Claisen rearrangement, Gatterman synthesis
21	ReimerTiemann reaction
22	Epoxides Nomenclature of ethers and methods of their formation
23	Physical properties
24	Synthesis of epoxides
25	Acid and base- catalyzed ring opening of epoxides
26	Orientation of epoxide ring opening,
27	Electrophilic and nucleophlic reagents
28	Reactions of Grignard and organolithium reagents with epoxides
29	REVISION OF SECTION B
30	CLASS TEST,
31	Carboxylic Acids& Derivatives
32	Nomenclature, structure and bonding, physical properties
33	Acidity of carboxylic acids
34	Preparation of carboxylic acids
35	Reactions of carboxylic acids. Hell- Volhard- Zelinsky reaction
36	Synthesis of acid chlorides, esters and amides
37	Reduction of carboxylic acids. Mechanism of decarboxylation

38	Nomenclature of acid chlorides, esters, amides (urea) and acid anhydrides
39	Relative stability of acyl derivatives.
40	and substitution
41	Preparation of carboxylic acid derivatives, chemical reactions
42	Mechanisms of esterification and hydrolysis (acidic and basic
43	TEST OF SECTION C
44	L sub set low)
45	Presentation and analysis of UV spectra, types of electronic transitions
46	Urrenshamis and hypothesis may of simplability
47	Woodward- Fieser rules, calculation of - unsaturated ketones
48	ov specification, aconjugated dienes and - unsaturated actus, o,
49	Revision
50	Revision

RPS Degree College, Balana (Mahendergarh) on Plan

2020-21(Odd Semester)

Class and Section: B.Sc 3rd Sem Non Medical Subject: Physical Chemistry

Lecture	Topics
1	Introduction of thermodynamics
2	Definition of system and surrounding and types of system
3	Extensive and intensive properties
4	State and path function and there differential
5	Thermodynamic process
6	Concept of heat and work
7	Zeroth law of thermodynamics
8	First law of thermodynamics
9	Internal energy and enthalpy heat capacity
10	Heat capacity at constant volume and pressure and their relation
11	Joules lion joule Thomson effect
12	Joule Thomson Coefficient for ideal gas and enthalpy change
13	Joule Thomson Coefficient for real gas and inversion temperature
14	calculation of work heat change in internal energy and change in enthalpy in Isothermal reversible expansion of an ideal gas
15	Calculation of these quantities in adiabatic reversible expansion of an ideal gas
16	Relation between temperature volume and pressure in case of adiabatic expansion of an ideal gas
17	Temperature dependence of enthalpy
18	Kirchoff's equation
19	Bond energy
20	Bond energy
21	Applications of bond energy
22	Applications of bond energy
23	Introduction of chemical equilibrium
24	Equilibrium constant and free energy
25	Concept of chemical potential
26	Thermodynamic derivation of law of chemical equilibrium
27	Temperature dependence of equilibrium constant
28	Vant Hoff reaction isochore
29	Vant Hoff reaction isotherm
30	Le Chatelier Principle
31	applications
32	Clausius Clapeyron equation
33	Applications of clausius clapeyron equation

34	Continued
35	Introduction of distribution law
36	Thermodynamic derivation of distribution law
37	Modification of distribution law when solute undergoes dissociation
38	In Association
39	In chemical combination
40	Applications of distribution law in determination of degree of hydrolysis of aniline hydrochloride
41	In determination of hydrolysis constant of aniline hydrochloride
42	In determination of equilibrium constant of potassium tri iodide complex
43	Application of distribution law in the process of extraction
44	Application of distribution law in the process of extraction
45	Numerical problems on distribution law
46	Numerical problems on process of extraction

õ.	
(

RPS Degree College, Balana (Mahendergarh)

n Plan B.Sc. Non Medical 3rd Sem Subject : Advanced Calculus

Subject : A	dvanced Calculus
Lecture	Topics
1	Definition of continuity
2	Sequential continuity
3	Properties of continuous function
4	Uniform continuity
5	Chain rule of differentiability
6	Mean value theorem
7	Rolles theorem
8	Lagrange mean value theorem
9	Geometric interpretation of mean value theorem
10	Taylor's theorem
11	Taylor's theorem with various form of remainders
12	Darboux theorem
13	Intermediate value theorem
14	Indeterminate form
15	L'hospital rule
16	/ indeterminate form
17	Continuity of function of two variable
10	Partial differentiation
20	Problems on partial differentiation
20	Composite function
21	Differentiation by composite rule
23	Problems on composite rule differentiation
24	Implicit function
25	Change of variable
26	Euler theorem
27	HOMOGENOUS function
28	Indeterminate form
29	Euler theorem for homogenous function
30	Taylor's theorem for function of two variable
31	Problems on Taylor theorem
32	Function of two variable
33	Concept of function of two variable
34	Differentiability of function of two variables
35	Schwartz theorem
36	Young's theorem
37	Implicit function theorem
38	Problems on implicit function theorem
39	Maxima of function of two variables
40	Minima of function of two variables
41	Lagrange method of multiplier
42	Partial differentiation
45	Problems on Lagrange method of multiplier
44	Properties
45	Principal normal and hi normal
47	Serret frenet formula
48	Locus of centre of curvature
49	Spherical curvature
50	Involute
51	Problems on involute
52	Evolute
53	Bertand curve
54	Tangent plane
55	One parameter family of surface
56	Problems Discussion
57	Envelope
58	Presentation Lecture
59	Problems Discussion
60	Problems Discussion
61	Problems Discussion
62	Presentation Lecture
63	Subject Extensions
64	Future Scope of the Subject Matter

RPS Degree College, Balana (Mahendergarh)

2020-21(Odd Semester)

Class and Section: B.Sc. Non Medical 3rd Sem. Subject: Partial Differential Equation

Lecture	Topics
1	Introduction to Syllabus, Scheme of Exam & Learning
1	Objectives/Outcomes
2	Test to Check the Learning Level of the Students
3	Useful equation in cylinderical coordinates
4	Solution of laplace equation in cylinderical co-ordinates
5	formation of equation by elimination of arbitrary functions
6	Nature of solutions
7	Question practice
8	Solution by lagranges method
9	Exercise questions
10	Compatible system of p.d.e
11	Charpit's method
12	Examples
13	Complete integrals
14	Jacobi's Method
15	Importantant formulas
16	Example practice
17	Second order p.d.e
18	Example practice
19	Solution of non homogeneous p.d.e
20	Exercise questions
21	Example practice
22	P.d.e with variable coefficients
23	Example practice
24	Example practice
25	Exercise questions
26	Canonical forms of second order linear p.d.e
27	Example practice
28	Solution of linear hperbolic equations
29	Example
30	Exercise questions
31	Cauchy problem
32	Example based on above concept
33	Characteristic curve
34	Characteristic equations
35	Wave equations
36	Solution of wave equations
37	Bounded and unbounded metric space
38	Examples
39	Laplace equation
40	Solution of laplace equations
41	question practice
42	Example practice
43	Heat equation
44	Solution ofheat equations
45	Example practice

46	Solution of laplace equation satisfying given initial cond.
47	Question practice
48	Monge's Method for solving p.d.e
49	Exercise questions
50	Example practice
51	Example practice
52	Revision
53	Revision
54	Functions behaviour
55	Type of discontinuity

RPS Degree College, Balana (Mahendergarh) son Plan

2020-21(Odd Semester)

Class and Section: B.Sc Non Medical 3rd Sem Subject: Statics		
1	Introduction to Syllabus, Scheme of Exam &	Learning Objectives/Outcomes
2	Test to Check the Learning Level of the Students	
3	Composition of forces	
4	Examples on last topic	
5	resolution of forces	
6	Examples on last topic	
7	Examples on last topic	

8	Parallel forces
9	Examples on last topic
10	Examples on last topic
11	Examples on last topic
12	Moments
13	Examples on last topic
14	Examples on last topic
15	Couples
16	Analytical conditions of equilibrium of coplanar forces
17	Examples on last topic
18	Examples on last topic
19	Friction
20	Examples on last topic
21	Examples on last topic
22	Examples on last topic
23	Examples on last topic
24	Centre of Gravity
25	Examples on last topic
26	Examples on last topic
27	Virtual work
28	Examples on last topic
29	Examples on last topic
30	Forces in three dimensions
31	Examples on last topic
32	Examples on last topic
33	Poinsots central axis
34	Examples on last topic

35

Examples on last topic

36	Wrenches
37	Examples on last topic
38	Examples on last topic
39	Examples on last topic
40	Null lines and planes
41	Examples on last topic
42	Examples on last topic
43	Stable and unstable equilibrium
44	Examples on last topic
45	Examples on last topic
46	Examples on last topic
47	Examples
48	More examples
49	Revision
50	Revision

Lesson plan Class and Section: B.SC. Non Medical 3rd Sem Subject: COMPUTER PROGRAMMING AND THERMIDYNAMICS

Lectures	Topics
1.	COURSE INTRODUCTION
2.	Phase, phase transition, latent heat
3.	Derivation of Clausius - Claperyron latent heat equation
4.	Continues same topic.
5.	Second latent heat equation,
6.	phase diagram
7.	Triple point of water
8.	Perfect differentials, introduction to Maxwell's thermodynamical
	relations
9.	Class Test 01
10.	Development of Maxwell's thermodynamical relations
11.	Continues same topic
12.	Thermodynamic functions : Internal energy (U), Helmholtz
	function (F), Enthalpy
	(H), Gibbs function (G) and the relations between them
13.	Continue same topic
14.	Continue same topic
15.	Continue same topic
16.	Maxwell's relations from thermodynamical functions
17.	Application of Maxwell relations in the derivation of
	relations between entropy, specific heats and thermodynamic
	variables
18.	Continue same topic
19.	Continue same topic
20.	Continue same topic
21.	Continue same topic
22.	Revision
23.	Problems and revision
24.	Computer Programming
25.	Computer organization
26.	Binary representation
27.	Algorithm development,
28.	flow charts and their interpretation
29.	Fortran Preliminaries
30.	Integer and floating point arithmetic expression, built in functions
31.	executable and non-executable statements
32.	Class test 02

33.	input and output statements
34.	Formats, I.F. DO and GO TO statements,
35.	Dimension arrays statement
36.	function subprogram, subroutine subprogram
37.	Problems and revision
38.	Revision of unit 2 (unit completed in online class)
	Thermodynamics-I: Second law of thermodynamics
39.	Carnot theorem, Absolute scale of temperature
40.	Absolute Zero, ENTROPY
41.	T-S diagram, Nernst heat law
42.	Joule's free expansion
43.	Joule Thomson (Porous plug) experiment
44.	Liquefication of gases
45.	Air pollution due to internal combustion Engine
46.	Previous year question paper discussion
47.	Previous year question paper discussion
48.	Problems and revision

Class and Section: B.Sc. Non Medical 3rd Sem.

Subject: OPTICS-I (PHY 302)

Lecture	Торіс
1.	Introduction of unit ,Introduction to Optics, Wave fronts, Types of waves,
	Transverse and longitudinal waves.
2.	Interference by youngs slits experiment, Expression for fringe width
3.	Analytical treatment for intensity distribution, Redistribution of energy
	Introduction to fresenlsbiprism
4.	Fresenlsbiprism, Construction and working, Application of biprism
5.	Determination of thickness of sheet using biprism, Determination of wavelength
6.	Lloyd mirror introduction, Construction and working
7.	Difference between biprism and Lloyds mirror, Numerical realted to fringe width
8.	Phase change on reflection, Stokes law
9.	Numericals of unit
10.	Conceptual questions related to unit
11.	Types of waves and speed of transverse wave in a string
12.	Fourier series
13.	Dirchelet conditions
14.	Fourier series applications
15.	Series of different limits
16.	Fourier series in complex format
17.	Values of constants
18.	Fourier coefficients
19.	Solution of triangular wave
20.	Solution to the rectangular wave
21.	Revise the two solution
22.	Half wave rectifier output solution
23.	Full wave rectifier output solution
24.	Previous year question paper solved and numericals of unit

25.	Introduction to fourier transform
26.	Application to fouriertranformation
27.	Exponential function solution
28.	Introduction to geometrical optics
29.	Matrix method
30.	effect of translation
31.	Derivation of lens formula
32.	Thick and thin lens
33.	Unit plane nodal planes
34.	Chromatic, spherical coma, distortions
35.	Importance of geometrical optics
36.	Solved numericals of unit
37.	Numerical problem
38.	Revision of unit- 1. 2,3
39.	Previous years paper solved
40.	Previous years paper solved

RPS Degree College, Balana (Mahendergarh) Lesson Plan 2020-21(Odd Semester) Class and Section: B.Sc(Non Medical & Medical) 3rd Sem

Subject: Sanskrit

(महम्मम) B. Sc. Non. Medical (Riter 3717917) B. Sc. Medical . (Riter 371797) John - 241181217 वेद, उपनिषद् 7: 21757. राज्यान्धनः स्नामान्य झाने पाठानुस्नारं। 42H: FICT21: इरार-तनः पाठरम् पत्रम् वलामाः सम्पूर्णाः ट्यारमा स्नाहतः Teatre FICTIZT: -त्तायः कालाशः वयं त्यास् यजामः वाठः सम्पूर्णः व्यास्या साहतः । यत्रधः कालगराः -ह रामायन रमनान्धानः रमामान्य सानं। पंचमः कालांशः – 6 धर्मज्ञः रामः १ पाठस्य स्पत व्लोकाः समपूर्णाः | पाठोडाप समपूर्णः व्यारव्या स्महत । En live less lesses & seles pris detail a minister de la prise यठाः कालांशः _ हश्मेतः रामः पाठस्य रगत श्लोकाः रनम्पूर्णाः । पार्डोडाय सम्पूर्णः स्वारव्या स्वहिता Contractor Peter 123 214 + Peter pille a la la contracto sites by रनम्तरः कालाशः - 6 सुन्दरकाण्ड २ सम्मान्धानः स्नामान्य ज्ञानं पाठानुसारं end lest all the set i reading dist - the start अत्टमः कालांशः - 6 र्याधुन्नतं चर पाठस्य पत्र्य रलोकाः सम्पूर्णाः ्यारन्या स्तहत। There declarity to be address & do by the folder a ६ रनाधुव्रतं चर' पाठरूप पञ्च इलोकाः सम्पूर्णाः स्वारूपा रनहित । पाठोडाप रनम्पूर्णः । नवमः कालाशः -

- विभीषगस्य विलापः पाठस्य पठ रतीकाः सम्पूर्णाः दृशमः कालायाः व्यारव्या इनहिता रुकादशः कालाशः - ध्विभीयगस्य विलायः पाठस्य युवह रत्नाकाः सम्पूर्णः 2412041 21180:1 द्वादशः मालाशः - ६ विभीषगरम् विलामः १ पाठस्म पवह रलोमाः सम्पूर्णाः व्यारमा स्नाहतः । पाठोडाप सम्पूर्णः भर्मादराः कालाशः - ' र्यक दगरिद्रमम्' पाहरम् पत्र्म दलाकाः सम्पूर्णाः -यतुर्दशः कालाशः - 6 शिक दारिद्रमम् १ पाठरम् अग्रे पत्र्य श्लोकाः व्यारन्या स्पन्निः सम्पूर्णाः । पंचदराः कालाशः - 6 रिंग् दारिद्रयम् पाठस्प अग्रे पत्र्य रलाकाः भोडेशः कालाशः – ¹ र्धिक दगरिद्रमम् 116 - ' रियक् दगरिद्रमम्' पाहरम अग्रे पत्र रतोकाः इनम्पूर्णाः पाहीडाप सम्पूर्णः / a start i start सम्बद्धाः कालाशः - (गर्मः भागः) ह अनुभासनी स्नम्बान्धनः सामान्यः ज्ञानं। 4181727728 1 and the the the for the

37027227: 3710127: -ट अनुशासनम् माह: रनम्पूर्ण: ट्यार्ट्य स्महतः । नवदशः कालाशः - द आयुर्वद भरकात्मनः रनामान्मः सानं पाठानुरमारा विश्वातिः कालांशः - ६ रनद्वत्वत् पाठः सम्पूर्णः व्यारव्या स्महतः । र्यमविश्वातः कालाशः - ६ खादमस्य वलं तस्प पाठः सम्पूर्वः व्याख्या स्तहतः । द्वाविशातः कालाशः - 6 नीलवर्गः भ्यातः भ पाठः रत्मपूर्गः व्यारव्या स्तरितः । त्रयनिदेशातः कालाशः - 6 दाशकर्य चातुर्घम् 9 पाठः सम्पूर्वः ट्यारज्या साहतः । -जनुर्विशानः कालगराः - 6 व्यालक, कार्वे, साधु, जल शब्दर्स् सम्पूर्वः । पज्यानंशातः कालाशाः - ' मात्, पित (सर्व भिषु लिंगणु) शाब्द रूपं सम्पूर्णम् । महन्दिशातः कालांशः - 'भू, अस्, वद् धातु सम्पूर्णः पत्र लकारेषु। स्तर विद्यातिः कालांशः - ४ त्रास्, परु, स्था धातु सम्पूर्गः । अव्याविद्यातिः कालांशः - दीर्घ, गुग, बुद्धि, भग्रसान्धः सम्पूर्गः उदाहरणसाहतः। नवनिंशातः कालांशः - अभादि, प्रहातभाव, पुर्वद्यप, पररूप रनान्धः सम्पूर्वः उदाहरण काहतः । ' इति अलम् ?

