RPS DEGREE COLLEGE BALANA (MAHENDERGARH)-123029

Lab Manual

Chemistry (B.Sc.3rd & 4th Semester) Department of Chemistry

INDEX

ORGANIC CHEMISTRY

1. To analyze the given organic compound in a systematic way i.e. detection of extra element ,functional group , determination of melting point , preparation of solid derivatives of following compounds : Naphthalene, oxalic acid, β -Napthol ,benzophenone , pthalic acid , aspirin, p-nitro toluene, anthracene ,m-dinitrobenzene , benzyl chloride , glucose, fructose, urea, cinnamic acid , benzamide.

EXPERIMENT:-1

AIM :- Detection of organic compounds.

I. PRELIMINARY TESTS FOR ORGANIC COMPOUNDS

PHYSICAL CHARACTERSTICS

(a) Colour – from the colour of organic compounds following observation can be drawn

	Observation	Inference
I.	Yellowish	Nitro compounds
II.	Pale yellow	Nitrobenzene
	liquid	Nitro aniline,
III.	Deep orange yellow	nitrophenols.
	I. II. III.	ObservationI.YellowishII.Pale yellowliquidIII.Deep orange yellow

(b)Odour:- From the odour of compound following observation can be drawn

Experiment	Observation	Inference
(a) Note the odour of	(a) Fruity smell	Esters

the compound	(b) Vinegar like	Acetic acid
	smell	Benzoyl chloride
	(c) Pungent smell	Alcohol
	(d) Wine like smell	Amines
	(e) Fishy smell	

(c) Ignition Test:- On burning organic compounds give following information

Experiment	Observation	Inference
(a) Take a small	a) Burns with a	Aromatic compounds
amount of	smoky flame.	
compound on a	b) Burns with non	Non aromatic
nickel spatula	smoky flame.	compounds
and heat.	c) Burnt with sugar	Carbohydrates
	smell.	
	d) Ammonical	Urea
	smell.	Benzoic acid, succinic
	e) Irritating smell	acid, salicyclic acid
	with coughing.	Sulphur present
	f) rotten eggs smell	

(d) Solubility Test:- The organic compound either dissolved in water or NaOH or dil. HCl gives following information

Experiment	Observation	Inference
a) Take a small amount of compound in a clean test tube and add 3 – 4 ml water. Shake well.	a) Sparingly soluble or insolubleb) Soluble	Hydrocarbons, esters, ethers etc. Lower alcohols, aldehydes, ketones, acids etc.
 b) Test the compound with litmus. c) Test the solubility in dil. HCl d) Test the solubility in NaOH 	 c) Turns blue litmus to red d) Turns red to blue e) Soluble and reprecipitated on adding alkali f) Soluble but reprecipitated on adding acid 	Acids, phenols Lower amines Base Phenol

PRELIMINARY CHEMICAL TESTS

1. **Sodalime test:-** On mixing organic compound with sodalime following observation are seen

Experiment	Observation	Inference
a) Take about 0.5 gm	a) Ammonical	Urea, acetamide
of solid compound	smell	Carbohydrates
with 2 gm of	b) Burnt sugar	Phenolic acid
sodalime (NaOH +	smell	Benzaldehyde
CaO) in a test tube	c) Smell of phenol	derivatives
and heat it	d) Smell of bitter	
	almonds	

2. Ferric chloride test:- with ferric chloride following observation are seen

Experiment	Observation	Inference
a) Dissolve 0.5 gm of	(a) Violet	Phenols, salicyclic
compound in $2-3$ ml		acid
of water and add 4-5	(b)Blue	P-cresol
drops of neutral FeCl ₃	(c) Blue violet	Resorcinol, m-
solution	(d) White ppt.	cresol
	changing to	α -napthol
	violet	-

3. Conc. H₂SO₄ test:-

Experiment	Observation	Inference
a) Heat 0.5 gm of	a) Dissolves with	Alcohols
compound with $2-$	violent reaction.	
3 ml of conc. H_2SO_4	b) Soluble in cold	Ethers
	water.	
	c) Dissolves	Formic acid or
	without	oxalic acid
	charring and	
	CO is given out.	
	d) Charring with	Aldehydes, ketones
		and aromatic
	no gas is	hydroxy acid
	evolved.	Urea, oxalate
	e) Dissolves	

	without	
	charring and	Aromatic
	CO_2 is given	
	out.	
	f) Dissolves	
	slowly but not	Carbohydrates
	precipitated on	
	dilution.	
	g) Dissolves on	
	heating with	
	charring CO ₂	
4. Sodium bicarbonate	e test:-	
Experiment	Observation	Inference
a) Mix the compound	a) Evolution of	Acid
in water and add	CO ₂ with	
solid NaHCO ₃	effervescence.	
	b) Dissolves with	Phenols
	no evolution of	
	CO_2 gas	
5. Action of KMnO ₄ solution:-		
Experiment	Observation	Inference
a) Add a very dil.	a) Decolorised	Unsaturated
Solution of KMnO ₄	immediately	compounds
		_

DETECTION OF EXTRA ELEMENTS

slowly

1. For detection of extra elements we have to prepare Lassaigne's extract

a. Preparation of lassaigne's extract:-

the solution of compound

Cut small pieces of dry sodium metal into ignition test tube now heat it till the pieces changes to silver globule. Now add a pinch of organic compound into this test tube again heat it till the tube becomes red hot. Now take a china dish containing 10 ml water now break the hot tube into this china dish. Now the solution is heated and filtered. The filtrate is known as lassaign's extract. (L.E.) or sodium extract (S.E.)

_		
Experiment	Observation	Inference
a) Test for nitrogen:-	No deep blue or	Nitrogen absent
To about 2ml of the S.E.,	blush green colour	
added a few drops of NaOH		

solution, followed by the addition of about 2 ml FeSO ₄ solution. Boiled the solution and add dill. H ₂ SO ₄ and shake. b) Test for Sulphur:- Add two drops of sodium nitroprusside solution to about 1ml of Lassaigne's	iolet colour Sulphur absent
extract. c) Test for Halogens:- I. Belistein's Test:- Heated a copper wire in the non-lumionous flame, till it imparts no colour. Dipped the copper wire into the organic compound and heated again in the flame. II. AgNO ₃ Test:- Added a fw drops of conc. HNO ₃ to about 5ml of Lassaigne's extract. Boiled off all gases. The solution is cooled and treated with AgNO ₃ solution.	een colourHalogens presentNo white ppt. No light yellow ppt. Yellow ppt. insoluble in NH $_4$ OH.Cl absent Br absent I confirmed

IDENTEIFICATION OF FUNCTIONAL GROUP

1. Test for – COOH group:-

Experiment	Observation	Inference
a) Sodium bicarbonate	a) Dissolve with	COOU group
test:- to the given	brisk evolution	confirmed
saturated solution of sodium bicarbonate	of CO_2 gas.	commed
 b) Ester test:- To a small amount of organic compound add 1 – 2 	b) Fruity smell	-COOH group confirmed

ml alcohol and 2 -3 drops of conc. H_2SO_4	

2. Test for phenolic group:-

Experiment	Observation	Inference
a) Litmus test:- add few	a) Blue litmus	-COOH or
drops of blue litmus	turned red	Phenolic group
solution to aqueous		present
compound		
b) Ceric ammonium	b) Brown pot	
nitrate test:- To	0) Diowii ppi.	Phenolic group
aqueous solution of		confirmed
organic compound		
add few drops of		
ceric ammonium		
nitrate.		

3. Test for Ketonic group > C = O:-

Experiment	Observation	Inference
a) Sodium nitroprusside	a) Presence of red	Presence of
test:- add a pinch of	colour	> C = 0 group
organic compound in		
alkaline sodium		
nitroprusside		
solution.		
b) Schiff's reagent test:-	b) Pink colour	
add small amount of	-)	Presence of
organic compound to		> C = 0 group
1-2 ml of schiffs		Or
reagent and shake.		Aldehyde present

4. Test for Carbohydrates:-

Experiment	Observation	Inference
a) Molisch test:- add	a) Deep violet	Carbohydrates
few drops of	ring at the	present
alcoholic α -	junction	
naphthol aolution to		
about 1 ml of		
aqueous solution of		
organic compound		Carbohydrates

b) Conc. H_2SO_4 test:-	b) Charring	present
add about 1 ml of		
con. H_2SO_4 to the		
given compound and		
warm.		

5. Test for esters:-

Experiment	Observation	Inference
a) Hydrolysis Test:-	a) Pink colour	Ester group present
To about 1 ml of	disappears	
substance, a drop		
of phenol phthalein		
and few drops of		
dil NaOH are		
added. Heat the		
contents on a water		
bath.		

6. Test for amide (-CONH₂) group:-

Experiment	Observation	Inference
a) HNO ₂ test:- add a	a) Effervescence	-CONH ₂ group
pinch of organic		present
compound to ice		
cold solution of		
$NaNO_2$ and dil.		
CH ₃ COOH	b) $NH_3(g)$	
b) NaOH test:- Heat	Evolved	-CONH ₂ group
a small amount of		present
compound with		
NaOH solution		

7. Test for $-NH_2$ group:-

Experiment	Observation	Inference
a) HNO ₂ test:- To	a) Brisk	Aliphatic
ice cold solution of	effervescence	-NH ₂ group present
compound in dil.		
HCl. Add few		
drops of saturated		
NaNO ₂ solution.		
b) Dye test:- To	b) Orange-red	Aromatic
about 0.5 g of	dve	D(-NH ₂) group
compound add 2-3		present
ml of water		

containing 1 ml of	
conc. HCl. Then	
cool the contents	
in ice, add 2 ml of	
10% NaNO ₂	
solution dropwise	
with constant	
stirring then add	
ice cold solution of	
alkaline β -	
naphthol	

8. Test for anilides:-

Experiment	Observation	Inference
a) NaOH Test:- Heat	a) Peculiar smell	-NHCOR (anilide)
a small amount of		group present
compound with 1-		
2 ml concentrated		
solution of NaOH		

9. Test for –No₂ group:-

Experiment	Observation	Inference
a) Dye Test:- Heat	a) Orange red	-NO ₂ group
the given		
compound with 1		
ml of conc. HCl		
and few pieces of		
granulated tin and		
heat the mixture		
for about 5		
minutes in a		
boiling water bath.		
Filters and cool the		
filterate in ice		
bath, then add 1, 2		
– ml of NaNO ₂		
solution followed		
by $1, 2 - ml$ of ice		
cold alkaline β -		
naphthol solution.		

10. Test for halogen group:-

	-	
Experiment	Observation	Inference

a) Boil about 0.2 or	a) Ppts. Formed	Halogen group is
2-3 ml of		present
compound with 2-		Ĩ
3 ml of KOH or		
NaOh (alc.) for 5		
minutes. Cool and		
add dil. HNO ₃ and		
AgNO _{3.}		

11. Test for -OH (alcoholic) group:-

Experiment	Observation	Inference
a) Ester test:- add 1g	a) Fruity smell	Alcoholic group
of CH ₃ COONa to		present
about 1-2 ml of		
compound and		
then 2-3 drops of		
conc. H_2SO_4	b) Red or pink	
b) Ceric ammonium	colour	Alcoholic group
nitrate test:- 10		confirmed
tew drops (10-15),		
add 2 ml of ceric		
ammonium nitrate		
solution		

12. Test for – CHO group:-

Experiment	Observation	Inference
a) Fehiling's solution	a) Red ppts.	CHO group
test:- add a small		present
amount of organic		
compound to 2-3		
ml of fehling's		
solution. Heat the		
contents on a water		
bath.		
b) Tollen's reagent	1 . 0.1	
test:- Warm 4-5 ml	b) Silver mirror	-CHO group
of Tollen's reagent	is formed	present
with small amount		
of organic		
compound on a		
water bath.		
c) Sodium bisulphite		
test:- To about 1		-CHO group

ml of organic compound, add 1-2 ml of saturated sodium bisulphite solution.	c) White ppts.	> C = 0 group present
---	----------------	--------------------------

PREPARATION OF SOLID DERIVATIVES

1. DERIVATIVES OF PHENOLS:-

a. Picrates: - Mix equal amounts of saturated solution of compound and picric acid in benzene (say 3 ml each). Shake the contents vigorously. Filter the precipitates formed and recrystallise from benzene (if required).

2. DERIVATIVES OF CARBOXYLIC ACIDS:-

a. S-Benzylisothiruronium salts :- Dissolve 0.5 g of given compound in 5-6 ml of water by heating. Add a drop of phenolphthalein indicator and then add NaOH till it becomes pink. Add 1-2 drops of HCl. Dissolve approximately 2.0 g of S-Benzyl isothiuronium chloride in 5-6 ml of water. Mix both the solution stir and cool the precipitates formed are filtered and crystallized from hot water.

3. DERIVATIVES OF CARBOHYDRATES:-

a. Osazones :- Shake about 1 g of compound, 2 g of phenyl hydrazine hydrochloride and 3g of sodium in a boiling water bath.
Yellow mass separates out, recrystallise from alcohol.
Glucose, fructose and sucrose form osazone in approximately 2, 5 and 30 minutes respectively.

4. DERIVATIVES OF ALDEHYDES AND KETONES:-

a. 2 ,4- Dinitrophenyl hydrazone: - Add approximately 5 ml of 2, 4-Dinitro hydrazine to 1g or 1ml of the compound in a dry test tube. Then add 1-2 drops of conc. H_2SO_4 Shake the contents and heat for few minutes. Cool, filter and recrystallise from alcohol or benzene.