# **RPS DEGREE COLLEGE** BALANA (MAHENDERGARH)-123029



# Lab Manual

Chemistry (B.Sc. Hons. 1<sup>st</sup> & 2<sup>nd</sup> Semester)

**Department of Chemistry** 

#### **INORGANIC CHEMISTRY**

#### **B.Sc. Hons. Ist Year**

#### INDEX

#### SEMESTER 1

#### **1. SEMI MICRO QUALITATIVE ANALYSIS**

To analyse the given mixture for anions (acid radicals) and cations (basic radicals), including interfering and excluding insoluble: Pb<sup>2+</sup>, Hg<sup>2+</sup>, Hg<sub>2</sub><sup>2+</sup>, Ag<sup>+</sup>, Bi<sup>3+</sup>, Cu<sup>2+</sup>, Cd<sup>2+</sup>, As<sup>3+</sup>, Sb<sup>3+</sup>, Sn<sup>2+</sup>, Fe<sup>3+</sup>, Cr<sup>3+</sup>, Al<sup>3+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup>, Mn<sup>2+</sup>, Zn<sup>2+</sup>, Ba<sup>2+</sup>, Sr<sup>2+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>, CO<sub>3</sub><sup>2-</sup>, S<sup>2-</sup>, SO<sub>3</sub><sup>2-</sup>, S<sub>2</sub>O<sub>3</sub><sup>2-</sup>, NO<sub>2</sub><sup>-</sup>, CH<sub>3</sub>COO<sup>-</sup>, Cl<sup>-</sup>, Br<sup>-</sup>, l<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, C<sub>2</sub>O<sub>4</sub><sup>2-</sup>, PO<sub>4</sub><sup>3-</sup>, BO<sub>3</sub><sup>3-</sup>

#### SEMESTER 2

Volumetric Analysis:

- To determine the strength of a given solution of sodium hydroxide solution by titrating it against a standard solution of oxalic acid.
- 2. Determine the number of molecules of water of crystallisation in ferrous ammonium sulphate FeSO<sub>4</sub> (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>xH<sub>2</sub>O, 20 gm of which have been dissolved per litre Provided app.  $\frac{N}{20}$  KMnO<sub>4</sub> solution
- 3. Given solution was prepared by dissolving 4g of ferrous oxalate in dil.  $H_2SO_4$  and volume made to one litre. Determine volumetrically.
  - (i) % purity of the sample.
  - (ii)% of oxalate ions in the sample.

Provided app.  $\frac{N}{20}$  KMnO<sub>4</sub> solution.

4. Determine the percentage purity of given sample of Mohr's salt, 20 gm of which are present per litre of solution. Provided solid  $K_2Cr_2O_7$ .

#### SCHEME OF MIXTURE ANALYSIS

#### The scheme of mixture analysis involves the following three main steps:-

- 1. Preliminary Tests.
- 2. Wet Tests for Anions or Acid radicals.
- 3. Wet Test for Cations or Basic radicals.

Wet Tests :- For wet tests, the solution of given mixture is required.

- I. Water extract (WE) :- Dissolve small amount of the given mixture in distilled water. If the mixture is almost soluble then it is filtered and the filtrate is taken as water extract.
- II. Sodium carbonate extract (SE) :- If the given mixture is insoluble in water then mix about 1g of  $Na_2CO_3$  in the above solution, boild and filtered. The filtrate is taken as sodium carbonate.
  - 1. PRELMINARY TESTS:-

#### Some of common preliminary test are :-

- I. Colour and smell :- Note down the colour and smell of the given mixture.
  - (a) Colour

Dark green - Cr Salt Light green - Ferrous salt Green - Ni Salt Blue green - Cu Salt Dark brown - Ferric salt Yellow - Ferric salt Light pink - Mn salt Pink violet - Co salt White - Cu<sup>2+</sup>,Fe<sup>2+</sup>,Fe<sup>3+</sup>,Cr<sup>3+</sup>,Co<sup>2+</sup>,Ni<sup>2+</sup>,Mn<sup>2+</sup> etc



(b) Smell

## Vinegar smell - CH<sub>3</sub>COO<sup>-</sup>

#### Ammonical Pungent smell - $NH_4^+$ salt

Rotten egg smell - S<sup>2-</sup>

**II. Dry Heating Test :-** Heat a small amount of mixture in a dry test tube to get following inference.

| Observation                                                              | Inferences                         |
|--------------------------------------------------------------------------|------------------------------------|
| Colourless, odourless gas which turns lime water, milky –Co <sub>2</sub> | CO <sub>3</sub> <sup>2-</sup>      |
| Colourless gas with rotten egg smell - H <sub>2</sub> S gas              | S <sup>2-</sup>                    |
| Colourless gass which turns dichromate paper green –SO <sub>2</sub>      | $SO_3^{2-}$ and $S_2O_3^{2-}$      |
| gas                                                                      |                                    |
| Colourless gas with Vinegar smell.                                       | CH₃COO⁻                            |
| Colourless gas with ammonical smell –NH <sub>3</sub>                     | $NH_4^+$ salt                      |
| Brown gas which turns FeSO <sub>4</sub> solution black –NO <sub>2</sub>  | NO <sub>2</sub> or NO <sub>3</sub> |
| Reddish brown gas which turns starch paper yellow – Br <sub>2</sub>      | Br⁻                                |
| Greenish yellow gas which bleaches moist litmus paper – $Cl_2$           | Cl                                 |
| Violet gass which turns starch paper blue – $I_2$                        | ſ                                  |
| Yellow colour when hot and white colour when cold                        | Zn salt                            |
| Brown colour when hot and yellow colour when cold                        | Pb salt                            |
| Cracking noise                                                           | Pb (NO <sub>3</sub> ) <sub>2</sub> |

III. Charcoal Cavity Test :- Add a pinch of given mixture with twice its amount of anhydrous Na<sub>2</sub>CO<sub>3</sub> and place in charcoal cavity add water heat in a reducing flame to get following in inferences.

| Observation                                    | Inferences          |
|------------------------------------------------|---------------------|
| Red scales                                     | Cu salt             |
| Yellow residue on heating and white on cooling | Zn salt             |
| Brown residue when hot and yellow when cold    | Pb salt             |
| White residue                                  | Ba, Al, Ca, Mg salt |
| Black residue                                  | No inference        |

**IV. Cobalt Nitrate Test:-** To the white residue is obtained in charcoal cavity then added a drop of cobalt nitrate solution and heat in an oxidizing flame to get the following inferences.

| Observation   | Inference |
|---------------|-----------|
| Green residue | Zn salt   |
| Blue residue  | Al salt   |
| Pink residue  | Ba salt   |

V. Borax Bead Test:- The test is applicable only for the coloured salt heat a crystal of borax ( $Na_2B_4O_7.10H_2O$ ) on a clean Pt. —wire loop till a transparent glassy mass is obtained. Touch this glassy mass with coloured mixture and again heated in an oxidizing flame.

| Observation                    | Inference |
|--------------------------------|-----------|
| Pink bead                      | Mn salt   |
| Yellow when hot and cold       | Fe salt   |
| Deep blue bead                 | Co salt   |
| Reddish brown when cold        | Ni salt   |
| Green when hot, blue when cold | Cu salt   |
| Dark green bead                | Cr salt   |

VI. **Flame Test:-** Mix a pinch of mixture with conc. HCl and dipped the loop of Pt-wire in it and put the loop at the base of a non luminous flame of the burner and observe the colour of the flame to get the following inferences.

| Observation        | Inference |
|--------------------|-----------|
| Brick red flame    | Ca salt   |
| Grassy green flame | Ba salt   |
| Crimson red flame  | Sr salt   |

VII. **Dilute H\_2SO\_4 Test:-** Mix few ml of  $H_2SO_4$  to a pinch of given mixture and note the reaction.

| Observation                                                                  | Inference                                              |
|------------------------------------------------------------------------------|--------------------------------------------------------|
| Brown gas which turns FeSO <sub>4</sub> solution black – No <sub>2</sub> gas | No <sub>2</sub>                                        |
| With brisk effervescence colourless, odourless gas which                     | CO <sub>3</sub> <sup>2-</sup>                          |
| turns lime water milky                                                       |                                                        |
| Rotten egg smell gas with no colour                                          | S <sup>2-</sup>                                        |
| Colourless gas which turns dichromate paper green                            | $SO_3^{2-}$ or $S_2O_3^{2-}$                           |
| No action with dil. $H_2SO_4$                                                | $CO_3^{2-}$ , $S^{2-}$ , $SO_3^{2-}$ , $S_2O^{2-}$ and |
|                                                                              | NO <sub>2</sub> <sup>-</sup> are absent                |
|                                                                              |                                                        |

VIII. KMnO<sub>4</sub> Test:- From the solution, boil off all the gases and mix 2 drops of KMnO<sub>4</sub> solution and note the observation.

| Observation                                            | Inference                                                              |
|--------------------------------------------------------|------------------------------------------------------------------------|
| Pink colour is discharged with a evolution of a gas    | OX <sup>2-</sup> , Cl <sup>-</sup> , Br <sup>-</sup> or l <sup>-</sup> |
| Pink colour is discharged without evolution of any gas | NO <sub>2</sub>                                                        |
| Pink colour is not discharged                          | $NO_2^-, Cl^-, Br^-, l^- and OX^{2-}$ are                              |
|                                                        | absent                                                                 |

IX. **Conc.**  $H_2SO_4$  **Test:-** With about 5ml conc.  $H_2SO_4$ , heat a pinch of given mixture and not the change.

| Observation                                               | Inference                                                                                        |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Brown gas which becomes dense by mixing copper turning    | NO <sub>3</sub> <sup>-</sup> present                                                             |
| Pungent smelling, colourless gas which gives dense white  | Cl <sup>-</sup> may be absent                                                                    |
| fumes with ammonia – HCl                                  |                                                                                                  |
| Brown gas, which is not affected by mixing copper turning | Br <sup>-</sup> present                                                                          |
| and turns starch paper yellow – Br <sub>2</sub> gas       |                                                                                                  |
| Violet gas which turns starch paper blue – $I_2$ gas      | l <sup>-</sup> present                                                                           |
| Vinegar smell gas –CH₃COOH                                | CH <sub>3</sub> COO <sup>-</sup> present                                                         |
| No reaction with conc. $H_2SO_4$                          | CO <sub>3</sub> <sup>2-</sup> , S <sup>2-</sup> , SO <sub>3</sub> <sup>2-</sup> ,                |
|                                                           | S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> , Cl <sup>-</sup> , Br <sup>-</sup> l <sup>-</sup> , |
|                                                           | $NO_3^{-}$ , $CH_3COO^{-}$ are                                                                   |
|                                                           | absent.                                                                                          |

2. Wet Tests for Anions or Acid radicals:- These are the wet tests as the mixture is treated in the form of its water extract (WE) for sodium carbonate extract (SE) with the reagents.

Test for  $CO_3^{2-}$ 

|      | Experiment                                  | Observation                | Inference                                        |
|------|---------------------------------------------|----------------------------|--------------------------------------------------|
| ١.   | Add about 5ml distilled                     | A. Residue                 | For insoluble CO <sub>3</sub> <sup>2-</sup> in   |
|      | water to a small amount of                  | B. Filtrate                | residue soluble CO <sub>3</sub> <sup>2-</sup> in |
|      | mixture, shake and filtered.                |                            | filterate                                        |
| 11.  | To one part of filtrate mix                 | Brisk effervescence with   | Soluble CO <sub>3</sub> <sup>2-</sup> present.   |
|      | few ml of dil. HCl.                         | the evolution of           |                                                  |
| 111. | Pass the gas evolved through                | colourless gas.            |                                                  |
|      | the lime water.                             | Turns milky                | Soluble CO <sub>3</sub> <sup>2-</sup> Confirmed  |
| IV.  | Mix few drops of MgSO <sub>4</sub>          |                            |                                                  |
|      | solution to the portion of                  | White ppt. formed          | Soluble CO <sub>3</sub> <sup>2-</sup> Confirmed. |
|      | filtrate.                                   |                            |                                                  |
| ٧.   | For insoluble CO <sub>3</sub> <sup>2-</sup> |                            |                                                  |
|      | To the residue add few                      | Brisk effervescence with   | Insoluble CO <sub>3</sub> <sup>2-</sup>          |
|      | drops of dilute HCl                         | the evolution of           | Confirmed                                        |
|      |                                             | colourless, odourless gas. |                                                  |
|      |                                             |                            |                                                  |

# Test for Sulphide ion, (S<sup>2-</sup>) :-

| Experiment                                                                                 | Observation   | Inference                 |
|--------------------------------------------------------------------------------------------|---------------|---------------------------|
| <ol> <li>To S.E. add to drops of<br/>sodium nitroprusside<br/>solution.</li> </ol>         | Purpul Colour | S <sup>2-</sup> confirmed |
| <ol> <li>To S.E. add 2-3 drops of<br/>acetic acid and lead acetate<br/>solution</li> </ol> | Black ppt.    | S <sup>2-</sup> confirmed |

Test for Sulphite ion (SO<sub>3</sub><sup>2-</sup>) :-

| Experiment                                           | Observation                                        | Inference              |
|------------------------------------------------------|----------------------------------------------------|------------------------|
| 1. To the 2-3 drops of SE, add                       | Green colour obtained                              | Sulphite ion confirmed |
| few drops of dil. H <sub>2</sub> SO <sub>4</sub> and |                                                    |                        |
| few drops of Potassium                               |                                                    |                        |
| dichromate solution.                                 |                                                    |                        |
| 2. To SE, add 2-3 drops of $BaCl_2$                  | White ppt. which on                                | $SO_3^{2-}$ confirmed  |
| solution.                                            | treatment with dil. H <sub>2</sub> SO <sub>4</sub> |                        |
|                                                      | to give SO <sub>2</sub> gas                        |                        |

# Test for Thiosulphate ion $(S_2O_3^{2-})$ :-

| Experiment                            | Observation             | Inference               |
|---------------------------------------|-------------------------|-------------------------|
| 1. To SE, add few drops of            | Violet or purple colour | $S_2O_3^{2-}$ confirmed |
| freshly prepared FeCl <sub>3</sub>    | which fades on standing |                         |
| solution.                             |                         |                         |
| 2. Add few drops of AgNO <sub>3</sub> | White ppt. changing to  | $S_2O_3^{2-}$ confirmed |
| solution to SE.                       | yellow, orange, brown   |                         |
|                                       | and finally black       |                         |

## Test for nitrite ion, (NO<sub>2</sub><sup>-</sup>) :-

| Experiment                          | Observation               | Inference                              |
|-------------------------------------|---------------------------|----------------------------------------|
| 1. To the water extract add 2-3     | Black colour              | NO <sub>2</sub> <sup>-</sup> confirmed |
| drops of ferrous sulphate           |                           |                                        |
| solution.                           |                           |                                        |
| 2. To water extract add 2-3         | Deep blue colour          | $NO_2^{-}$ confirmed                   |
| drops of diphenylamine.             |                           |                                        |
| 3. Add dil. $H_2SO_4$ to a pinch of | Pink colour is discharged | $NO_2^{-}$ confirmed                   |
| mixture. Boil off gas evolved       |                           |                                        |
| and mix 2 drops of $KMnO_4$         |                           |                                        |
| solution.                           |                           |                                        |

Confirmatory tests or wet tests or acid radicals which do not react with dilute  $H_2SO_4$  like Cl<sup>-</sup>, Br<sup>-</sup>, l<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, CH<sub>3</sub>COO<sup>-</sup>, oxalate ion

# Test for Nitrate ion (NO<sub>3</sub><sup>-</sup>):-

| Experiment                           | Observation                             | Inference                              |
|--------------------------------------|-----------------------------------------|----------------------------------------|
| 1. Add few drops of conc.            | Dark brown fumes of NO <sub>2</sub> gas | NO <sub>3</sub> <sup>-</sup> confirmed |
| $H_2SO_4$ to a pinch of              | evolved                                 |                                        |
| mixture, boil and then               |                                         |                                        |
| add few copper turnings.             |                                         |                                        |
| 2. Ring test:- To the WE             | At the junction a dark brown            | NO <sub>3</sub> <sup>-</sup> confirmed |
| add few drops of freshly             | ring is formed of two layers            |                                        |
| prepared FeSO <sub>4</sub> solution. |                                         |                                        |
| Shake and add few drops              |                                         |                                        |
| of conc. $H_2SO_4$ along the         |                                         |                                        |
| side of test tube.                   |                                         |                                        |

# Test for Chloride ion (Cl<sup>-</sup>):-

| Experiment                                        | Observation                               | Inference               |
|---------------------------------------------------|-------------------------------------------|-------------------------|
| 1. To WE add AgNO <sub>3</sub>                    | White ppt. soluble in NH <sub>4</sub> OH. | Cl <sup>-</sup> present |
| solution.                                         |                                           |                         |
| 2. Chromyl Chloride test:-                        | Red vapours of Chromyl                    | Cl <sup>-</sup> present |
| Heated a pinch of                                 | Chloride are formed                       |                         |
| mixture with solid                                |                                           |                         |
| $K_2Cr_2O_7$ and few ml of                        | Yellow colouration                        | Cl <sup>-</sup> present |
| conc. H <sub>2</sub> SO <sub>4</sub> pass the red |                                           |                         |
| vapours through NaOH                              |                                           |                         |
| solution.                                         |                                           |                         |
| To the yellow colour                              | Yellow ppt. soluble in NaOH               | Cl <sup>-</sup> present |
| solution add dil. Acetic                          | solution                                  |                         |
| acid and lead acetate                             |                                           |                         |
| solution.                                         |                                           |                         |

# Test for Bromide ion (Br<sup>-</sup>) :-

| Experiment                         | Observation                         | Inference                 |
|------------------------------------|-------------------------------------|---------------------------|
| 1. $CS_2$ or $CCl_4$ Test:- To the | Orange coloure in $CS_2$ or $CCI_4$ | Br <sup>-</sup> confirmed |
| WE add 4-5 drops of $CS_2$         | layer                               |                           |

| or CCl <sub>4</sub> and few ml of |                             |                                  |
|-----------------------------------|-----------------------------|----------------------------------|
| freshly prepared                  |                             |                                  |
| chlorine water and shake          |                             |                                  |
| thoroughly.                       |                             |                                  |
| 2. Add few drops of $AgNO_3$      | Light yellow ppt. partially | <b>Br</b> <sup>-</sup> confirmed |
| solution to the WE.               | soluble in NH₄OH            |                                  |

## Test for iodide (I<sup>-</sup>) :-

| Experiment                         | Observation                              | Inference                |
|------------------------------------|------------------------------------------|--------------------------|
| 1. $CS_2$ or $CCl_4$ Test:- To the | Purple violet colour in CCl <sub>4</sub> | l <sup>-</sup> Confirmed |
| WE or SE after boiling off         | layer                                    |                          |
| CO <sub>2</sub> by heating with    |                                          |                          |
| dilute HNO <sub>3</sub> , add few  |                                          |                          |
| drops of $CS_2$ or $CCI_4$ and     |                                          |                          |
| then add freshly                   |                                          |                          |
| prepared chlorine water            |                                          |                          |
| with constant shaking.             |                                          |                          |
| 2. To the WE or SE after           | Yellow ppt. insoluble in                 | l <sup>-</sup> Confirmed |
| boiling off CO <sub>2</sub> , add  | NH₄OH                                    |                          |
| AgNO <sub>3</sub> solution.        |                                          |                          |

# Wet Test for Acetate (CH<sub>3</sub>COO<sup>-</sup>) :-

| Experiment                            | Observation                     | Inference                                  |
|---------------------------------------|---------------------------------|--------------------------------------------|
| 1. Ester test:- Heat a pinch          | A fruity smell of ethyl acetate | CH <sub>3</sub> COO <sup>-</sup> confirmed |
| of mixture with small                 |                                 |                                            |
| conc. $H_2SO_4$ and few               |                                 |                                            |
| drops of ethyl alcohol.               |                                 |                                            |
| 2. FeCl <sub>3</sub> Test:- To the WE | Blood red colour                | CH <sub>3</sub> COO <sup>-</sup> confirmed |
| add 2-3 drops of neutral              |                                 |                                            |
| FeCl <sub>3</sub> solution.           |                                 |                                            |

## Wet Test for oxalate ion :-

| Experiment                                | Observation                      | Inference             |
|-------------------------------------------|----------------------------------|-----------------------|
| 1. Heat a pinch of mixture                | A mixture of CO and $CO_2$       | Oxalate ion may be    |
| with conc. H <sub>2</sub> SO <sub>4</sub> | evolved                          | present               |
| 2. To a part of SE, add dil.              | White ppt.                       | Oxalate ion confirmed |
| acetic acid. Boil of all                  |                                  |                       |
| gases and then cool. Add                  |                                  |                       |
| few ml of CaCl <sub>2</sub> solution.     |                                  |                       |
| 3. Filter the solution and                | Pink colour of KMnO <sub>4</sub> | Oxalate ion confirmed |
| wash the ppt. with                        | discharge with evolution of      |                       |
| distilled water and                       | CO <sub>2</sub>                  |                       |
| extract the ppt. with                     |                                  |                       |
| about 1 ml of dil. $H_2SO_4$              |                                  |                       |
| added about two drops                     |                                  |                       |
| of KMnO <sub>4</sub> solution.            |                                  |                       |

Wet Test for acidic radicals which do not react both with dil.  $\rm H_2SO_4$  like  $\rm SO_4^{2^-},$   $\rm PO_4^{\ 3^-},$   $\rm BO_3^{\ 3^-}$ 

# Test for sulphate ion SO<sub>4</sub><sup>2-</sup>:-

| Experiment                               | Observation                     | Inference                               |
|------------------------------------------|---------------------------------|-----------------------------------------|
| 1. BaCl <sub>2</sub> Test:- To few ml of | White ppt. of BaSO <sub>4</sub> | SO <sub>4</sub> <sup>2-</sup> confirmed |
| SE, add dil. HCl, boil off               |                                 |                                         |
| all gases and then cool.                 |                                 |                                         |
| Then add 3-4 drops of                    |                                 |                                         |
| BaCl <sub>2</sub> solution.              |                                 |                                         |
| 2. Match – stick Test:- Filter           | Purple streaks                  | SO <sub>4</sub> <sup>2-</sup> confirmed |
| the solution and wash                    |                                 |                                         |
| the ppt. with distilled                  |                                 |                                         |
| water mix the ppt. with                  |                                 |                                         |
| twice the amount of                      |                                 |                                         |
| $Na_2CO_3$ . Apply a part of             |                                 |                                         |
| the mixture on wooden                    |                                 |                                         |
| part of match stick. Heat                |                                 |                                         |
| the and in reducing                      |                                 |                                         |

| <ul> <li>flame till charred mass.</li> <li>Through this mass in sodium nitroprusside solution taken in china dish.</li> <li>3. Lead Acetate Test:- Boil S.E. will dil. Acetic acid in solution taken in china dish.</li> </ul> | White ppt. | SO <sub>4</sub> <sup>2-</sup> confirmed |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|
| S.E. will dil. Acetic acid in a test tube and then add                                                                                                                                                                         |            |                                         |
| lead Acetate Solution.                                                                                                                                                                                                         |            |                                         |

# Test for Borate ion (BO<sub>3</sub><sup>3-</sup>):-

| <b>F !</b>                                |                      |                                         |
|-------------------------------------------|----------------------|-----------------------------------------|
| Experiment                                | Observation          | Inference                               |
| 1. In a few drops of ethyl                | A green edged flame  | $BO_3^{3-}$ confirmed                   |
| alcohol add few drops of                  |                      |                                         |
| conc. $H_2SO_4$ to a pinch of             |                      |                                         |
| mixture taken in china                    |                      |                                         |
| dish. Heat the mixture                    |                      |                                         |
| and ignite the vapours                    |                      |                                         |
| so evolved.                               |                      |                                         |
| 2. Turmeric paper Test:-                  | Turmeric paper turns | BO <sub>3</sub> <sup>3-</sup> confirmed |
| Dissolve few mg of the                    | greenish brown       |                                         |
| mixture in few drops of                   |                      |                                         |
| dil. HCl. Dip turmeric                    |                      |                                         |
| paper in the above                        |                      |                                         |
| solution and wrap it                      |                      |                                         |
| around the neck of semi                   |                      |                                         |
| <ul> <li>micro tube containing</li> </ul> |                      |                                         |
| water. Boil the water to                  |                      |                                         |
| dry the turmeric paper.                   |                      |                                         |

# Test for Phosphate (PO<sub>4</sub><sup>3-</sup>) :-

| Experiment                 | Observation | Inference                               |
|----------------------------|-------------|-----------------------------------------|
| 1. Megnesia mixture:- To a | White ppt.  | PO <sub>4</sub> <sup>3-</sup> confirmed |

| <ul> <li>part of SE add dil. HCl, boil of CO<sub>2</sub> gas and cool. Add NH<sub>4</sub>OH solution till alkaline and then add few drops of magnesia mixture (equal amounts of MgSO<sub>4</sub>, NH<sub>4</sub>Cl and NH<sub>4</sub>OH solution).</li> <li>2. Ammonium Molybdate Test:- Add few drops of conc. HNO<sub>3</sub> to a part of mixture, boil and then add a pinch of solid ammonium molybdate solution, boil again.</li> </ul> | Yellow ppt. | PO <sub>4</sub> <sup>3-</sup> confirmed |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|

- 3. Wet Test for Cations or Basic radicals:- The classification of cations in the six groups is based upon the fact that the radicals belonging to a particular group are precipitated by some specific group reagent. A group reagent is that which have following properties:-
  - 1) For the complete precipitation of the cations of particular group, it should be effective.
  - 2) The resulting precipitate must easily dissolve in acid to get the cation in the form of solution.
  - 3) For a specific group cation, it should be specific.

| The  | scheme     | for   | separating   | cations  | or | basic | radicals | into | six |
|------|------------|-------|--------------|----------|----|-------|----------|------|-----|
| anal | ytical gro | ups i | s shown as f | ollows:- |    |       |          |      |     |

|         | Group I          | IIA                                 | IIB              |                    | IV                                 | V                                               | VI               |
|---------|------------------|-------------------------------------|------------------|--------------------|------------------------------------|-------------------------------------------------|------------------|
| Cations | Ag++′            | Hg <sup>2+</sup> ,Pb <sup>2+</sup>  | As <sup>3+</sup> | Fe <sup>3+</sup> , | Co <sup>2+</sup> ,Ni <sup>2+</sup> | Ba <sup>2+</sup> ,Sr <sup>2+</sup>              | Mg <sup>2+</sup> |
|         | $HG_{2}^{2+}$    | Bi <sup>3+</sup> , Cu <sup>2+</sup> | Sb <sup>3+</sup> | Al <sup>3+</sup> , | Mn <sup>2+</sup> ,                 | Ca <sup>2+</sup>                                | $Na^+,K^+$       |
|         | Pb <sup>2+</sup> | Cd <sup>2+</sup>                    | Sn <sup>2+</sup> | Cr <sup>3+</sup>   | Zn <sup>2+</sup>                   |                                                 | $NH_4^+$         |
|         |                  |                                     |                  |                    |                                    |                                                 |                  |
| Group   | Dil.HCl          | $H_2S$ gas in                       | $H_2S$ gas       | NH₄OH              | H <sub>2</sub> S gas               | (NH <sub>4</sub> ) <sub>2</sub> Co <sub>3</sub> | No               |

| Reagent | presence    | in       | in                    | in       | in                    | group   |
|---------|-------------|----------|-----------------------|----------|-----------------------|---------|
|         | of dil. HCl | presence | presence              | presence | presence              | reagent |
|         |             | of dil.  | of NH <sub>4</sub> CL | of dil.  | of NH <sub>4</sub> Cl |         |
|         |             | HCI      |                       | HCI      | & NH₄OH               |         |

Original solution (OS) :- original solution is clear solution of the mixture which is prepared

#### (i) By using distilled water (DW) and dil. HCl

Or

## (ii) By using distilled water and conc. HCl

Wet Test for group –I Cations :- To the OS, add to drops of dil. HCl. If precipitate appears, then add more HCl to make precipitation complete. Centrifuge and wash the ppt. with distilled water and reserve the filtrate for the analysis of Group II cations.

White ppt. - for Group I cation

Filtrate or supernate - for group II cation

With few ml of distilled water boil the white ppt. and filter.

-ppt. for Hg<sub>2</sub><sup>2+</sup> and Ag<sup>+</sup>

Filtrate for Pb<sup>2+</sup> as PbCl<sub>2</sub>

| ppt. (for $Hg_2^{2+}$ and $Ag^+$ )                           | Filterate (for Pb <sup>2+</sup> )     |  |  |
|--------------------------------------------------------------|---------------------------------------|--|--|
| With hot water wash the ppt., centrifuge                     | Filtrate is classified into two parts |  |  |
| and reject the filtrate. Add few drops of dil.               | 1) To one part add few drops          |  |  |
| Ammonia solution to the ppt. and                             | potassium chromate solution           |  |  |
| centrifuge.                                                  | (yellow ppt.)                         |  |  |
| Centrifuge :-                                                | 2) To second part add few drops KI    |  |  |
| I- Black residue (for Hg <sub>2</sub> <sup>2+</sup> ) :- add | solution (yellow ppt.)                |  |  |
| stannous chloride to the solution of                         | -Pb <sup>2+</sup> confirmed           |  |  |
| mercurous salt. White ppt. turns gray                        |                                       |  |  |
| – Hg <sub>2</sub> <sup>2+</sup> confirmed                    |                                       |  |  |

| II- Superna | te or filtrate (for $Ag^+$ ) :- To |
|-------------|------------------------------------|
| filtrate a  | dd few drops of dil. $HNO_3$       |
| -white p    | pt. – Ag⁺ confirmed                |

Group II :- If Group I cation is present, then take the filterate of Group I and pass H<sub>2</sub>S gas. To OS add dil. HCl and pass H<sub>2</sub>S gas.

ppt. – for Group II cations

Filtrate - for Group III

Ppt - contain Pb<sup>2+</sup>,Hg<sup>2+</sup>,Bi<sup>3+</sup>, Cu<sup>2+</sup>, Cd<sup>2+</sup>, As<sup>3+</sup> Sb<sup>3+</sup> , Sn<sup>2+</sup> in the form of their sulphide.

Analysis of cation of IIA or II B in the acidic OS after passing  $H_2S$  gas, the ppt. obtained centrifuge and wash the ppt. with distilled water. For group III reserve the filtrate.

| Coloured ppt. – for group II                                                  | ppt. fo              | r group II                                                  |
|-------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------|
| Mix few ml of yellow ammonium sulphide                                        | Ppt – for group IIA  |                                                             |
| to the above ppt. shake and warm the                                          | Filterate - for grou | ip IIB                                                      |
| content and centrifuge. In a beaker, decant                                   | Analysis of group I  | I A cations                                                 |
| off the liquid portion to the remaining ppt.                                  | With few ml of dil.  | $HNO_3$ heat the ppt.                                       |
| add 2 ml of yellow ammonium sulphide,                                         | and centrifuge       |                                                             |
| shake, warm and centrifuge.                                                   |                      |                                                             |
| Analysis of group IL R sation                                                 | Residue:-            | Filterate :-                                                |
| Analysis of group II-B cation:-<br>To the above filtrate add acid dil. HCl to | -Black residue for   | -For Pb <sup>2+</sup> , Bi <sup>3+</sup> , Cu <sup>2+</sup> |
| make the solution. Warm the solution and                                      | Hg <sup>2+</sup>     | and Cd <sup>2+</sup> .                                      |
| centrifuge to the ppt. mix 2 ml of distilled                                  | With the help of     | Mix few drops of                                            |
| water and 5 ml conc. HCl and warm.                                            | the water wash       | conc. $H_2SO_4$ and                                         |
| Centrifuge and wash the ppt. with dil. HCl                                    | the residue boil     | transfer the contains                                       |
| Yellow ppt – for As <sup>3+</sup>                                             | the ppt. with conc.  | to china dish.                                              |
| Filterate – for Sb <sup>3+</sup> , Sn <sup>4+</sup>                           | HCI and pinch of     | Evaporate till few                                          |
| ,,                                                                            | potassium            | drops remain, cool                                          |
|                                                                               | chlorate. Boil of    | and add $2ml H_2O$ and                                      |
|                                                                               | cases and then       | centrifuge                                                  |

| mix SnCl <sub>2</sub> solution.<br>White ppt. turns |
|-----------------------------------------------------|
| grey<br>- Hg <sup>2+</sup><br>confirmed             |
| confirmed                                           |
|                                                     |
|                                                     |

| Coloured ppt for Group II                                  | Filterate – Group III                                  |  |  |
|------------------------------------------------------------|--------------------------------------------------------|--|--|
| Test for As <sup>3+</sup> :-                               | Ppt for Pb <sup>2+</sup>                               |  |  |
| Wash the ppt. with hot water boil with                     | Filterate for Bi, Cu, Cd-                              |  |  |
| few ml conc. $HNO_3$ and then mix few                      | Wash the ppt. with $H_2O$ reject is washing mix        |  |  |
| drops of ammonium molybdate.                               | few drops of conc. Ammonium acetate and                |  |  |
| Yellow ppt. – As <sup>3+</sup> confirmed                   | heat with shaking ppt. dissolve mix few drops          |  |  |
| Test for Sb <sup>3+</sup> and Sn <sup>3+</sup>             | potassium chromate solution and few drops              |  |  |
| The filterate is divided into two parts :-                 | of acetic acid.                                        |  |  |
| 1) Mix few mg of oxalic acid to one                        |                                                        |  |  |
| part and pass $H_2S$ gas.                                  | Yellow ppt. – Pb <sup>2+</sup> confirmed               |  |  |
| -orange ppt Sb <sup>3+</sup> confirmed                     | Tests for Bi, Cu, Cd:-                                 |  |  |
| 2) Warm the second part with a piece                       | Add conc. Ammonia drop wise (in excess)                |  |  |
| of Al metal. Centrifuge if any ppt.                        |                                                        |  |  |
| reject them. To filterate add 5ml                          | Centrifuge :-                                          |  |  |
| HgCl <sub>2</sub> .                                        | (i) Ppt for Bi <sup>3+</sup>                           |  |  |
| <ul> <li>White ppt. – Sn<sup>4+</sup> confirmed</li> </ul> | (ii) Filterate for Cu <sup>2+</sup> , Cd <sup>2+</sup> |  |  |
|                                                            | In the ppt., add few drops of sodium stannite          |  |  |
|                                                            | solution                                               |  |  |
|                                                            | It turns black – Bi <sup>3+</sup> confirmed            |  |  |
|                                                            | For Cu <sup>2+</sup> and Cd <sup>2+</sup> :-           |  |  |
|                                                            | Divide the filterate in two parts.                     |  |  |
|                                                            | 1) Mix dil. HCl and few drops of potassium             |  |  |

| <ul> <li>ferrocyanide solution to one part of the filterate</li> <li>Reddish colour – Cu<sup>2+</sup> confirmed</li> <li>2) Mix KCN solution to the second part of the filterate till blue colour disappears</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pass H <sub>2</sub> S gas – yellow ppt.<br>- Cd <sup>2+</sup> confirmed                                                                                                                                                 |

Analysis of group III cations (Fe<sup>3+</sup>, Cr<sup>3+</sup>, Al<sup>3+</sup>)

From filterate of group – II, boil off  $H_2S$  gas mix few drops of conc.  $HNO_3$ , boil and cool the content. Now mix solid  $NH_4Cl$  again, boil and cool. Then add  $NH_4OH$  solution in excess.

Centrifuge

- Ppt for group III

- Filterate for group IV

Mix 2 ml distilled water and few mg sodium peroxide to the ppt. Boil, cool and centrifuge.

| Brown ppt. for Fe <sup>3+</sup> | Filterate for Cr <sup>3+</sup> and Al <sup>3+</sup>    |
|---------------------------------|--------------------------------------------------------|
| Dissolve the ppt. dil. HCl.     | Divide the filterate into two parts                    |
| Divide the solution in two      | 1) Add few drops of lead acetate solution              |
| parts:-                         | and dil. HCl to one part of the filterate              |
| 1) Mix KCNS solution to         | - Yellow ppt                                           |
| first part of the solution.     | - Cr <sup>3+</sup> confirmed                           |
| Blood red colour                | 2) Mix few mg NH <sub>4</sub> Cl to the second part of |
| - Fe <sup>3+</sup> confirmed    | the filterate.                                         |
| 2) Mix potassium                | - White gelatinous ppt.                                |
| Ferrocyanide solution           |                                                        |
| to the second part of           | Dissolve the ppt in dil. HCl and then                  |
| the solution.                   | add few drops of blue litmus solution                  |
| Deep blue colour ppt.           | and mix NH4OS dropwise                                 |
| - Fe <sup>3+</sup> confirmed    | - Blue ppt.                                            |
|                                 | - Al <sup>3+</sup> confirmed                           |

Analysis of Group IV cations (Co<sup>2+</sup>,Ni<sup>2+</sup>, Mn<sup>2+</sup>,Zn<sup>2+</sup>)

To the filterate of group III, mix  $NH_4OH$  solution in excess and pass  $H_2S$  gas.

## Centrifuge

# -ppt for group IV

- filterate for group V

## Mix the ppt. with HCl, Shake and centrifuge

| Mix the ppt. with http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with.http://with. |                                       |                                                         |                                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|-----------------------------------------------------|--|
| Black ppt. for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Co <sup>2+</sup> and Ni <sup>2+</sup> | Filterate for Mn <sup>2+</sup> and Zn <sup>2+</sup>     |                                                     |  |
| Take the ppt. to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | china dish, mix                       | Boil off H <sub>2</sub> S gas, cool and add few ml NaOH |                                                     |  |
| conc. HCl and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | crystal of KClO <sub>3</sub> .        | solution and then add fev                               | v drops of H <sub>2</sub> O <sub>2</sub> . Heat the |  |
| Evaporate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | solution till                         | content & centrifuge.                                   |                                                     |  |
| dryness and obs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | serve the colour                      |                                                         |                                                     |  |
| of the residue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Dark brown ppt. (for                                    | Filterate (for Zn <sup>2+</sup> ):-                 |  |
| - Blue or gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | een colour – for                      | Mn <sup>2+</sup> ):-                                    |                                                     |  |
| Co <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Ppt. divide into two                                    | Filterate divide into                               |  |
| - Yellow col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lour - for Ni <sup>2+</sup>           | parts :-                                                | two parts:-                                         |  |
| To the residue n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nix few ml of                         | 1. Mix few ml conc.                                     | 1. Mix few drops of                                 |  |
| distilled water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | $HNO_3$ and pinch of                                    | dil. HCl and                                        |  |
| Divide the soluti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ion into two                          | PbO <sub>2</sub> to one part                            | potassium                                           |  |
| parts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | of ppt. Boil, cool                                      | ferrocyanide to                                     |  |
| For Co <sup>2+</sup> :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | For                                   | and dil. with                                           | one part of the                                     |  |
| Ni <sup>2+</sup> :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | distilled water.                                        | filterate                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | - Pink colour                                           | - Bluish white ppt.                                 |  |
| Mix few                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mix few drops                         | - Mn <sup>2+</sup> confirmed                            | - Zn <sup>2+</sup> confirmed                        |  |
| crystal of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of dimethyl                           |                                                         | 2. To the second                                    |  |
| ammonium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gloxime and                           |                                                         | part of the                                         |  |
| sulphocyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NH <sub>4</sub> OH to                 |                                                         | solution of                                         |  |
| and amyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | second part of                        |                                                         | filterate pass H <sub>2</sub> S                     |  |
| alcohol with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the solution                          | 2. Borax bead test:-                                    | gas                                                 |  |
| shaking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Bright                              | Apply borax bead                                        | - Dirty white ppt.                                  |  |
| - Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | red                                   | test to the second                                      | - Zn <sup>2+</sup> confirmed                        |  |
| colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | colour                                | portion of ppt.                                         |                                                     |  |
| in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - Ni <sup>2+</sup>                    | - Pink bead                                             |                                                     |  |

| alcohol                     | confirme | - Mn <sup>2+</sup> confirmed |  |
|-----------------------------|----------|------------------------------|--|
| layer                       | d        |                              |  |
| layer<br>- Co <sup>2+</sup> |          |                              |  |
| confirm                     |          |                              |  |
| ed                          |          |                              |  |
|                             |          |                              |  |

# Analysis of Group V Cation (Ba<sup>2+</sup>,Sr<sup>2+</sup>,Ca<sup>2+</sup>):-

From filterate of group IV, boil off  $H_2S$  gas mix solid ammonium nitrate. Boil the content, cool and then mix  $NH_4CI$  and few drops of  $NH_4OH$ . Now mix Ammonium carbonate solution and scratch the sides of test tube for few minutes.

## Centrifuge:-

- white ppt. for group V

- filterate for group VI

The above white ppt. dissolved in small amount of acetic

acid and boil off  $CO_2$  gas, cool and mix few drops of Pot. Chromate

| Residue:-                                    | Filterate :- For Sr <sup>2+</sup> and Ca <sup>2+</sup> |                                      |  |
|----------------------------------------------|--------------------------------------------------------|--------------------------------------|--|
| - Yellow ppt.                                | To the filterate mix ammonia dropwise and              |                                      |  |
| - Ba <sup>2+</sup> confirmed                 | then mix an excess                                     | s of ammonium sulphate.              |  |
| Wash the ppt. with water and reject the      | Boil, cool and cen                                     | trifuge. If no white ppt.            |  |
| washings.                                    | Sr <sup>2+</sup> is absent.                            |                                      |  |
| Flame test :- Apply flame test with the ppt. | White ppt. :-                                          | Filterate for Ca <sup>2+</sup> ion:- |  |
| - Grassy green flame                         | Sr <sup>2+</sup> confirmed                             | To above filterate mix               |  |
| - Ba <sup>2+</sup> confirmed                 | Flame test :-                                          | ammonium oxalate                     |  |
|                                              | Apply flame test                                       | solution and wait for 2-             |  |
|                                              | with the ppt.                                          | 3 minutes.                           |  |
|                                              | - Crimson                                              |                                      |  |
|                                              | red flame                                              | White ppt. –                         |  |
|                                              | - Sr <sup>2+</sup>                                     | Ca <sup>2+</sup> confirmed           |  |
|                                              | confirmed                                              | Flame test :- Apply                  |  |
|                                              |                                                        | flame test with the ppt.             |  |
|                                              |                                                        | - Brick red flame                    |  |

|  | - Ca <sup>2+</sup> confirmed |
|--|------------------------------|
|  |                              |
|  |                              |

# Analysis of Group VI - (Mg<sup>2+</sup>, NH<sub>4</sub>+):-

From group V heat the filterate to dryness, cool and mix few drops of conc. HNO<sub>3</sub>. Again heat to dryness and dissolve the residue in few ml of distilled water.

| Test for Mg <sup>2+</sup>                  | Test for NH4 <sup>+</sup>                  |  |
|--------------------------------------------|--------------------------------------------|--|
| Mix few drops of Magneson reagent (an      | 1. Mix strong solution of caustic soda     |  |
| alkaline solution of p-nitrobenzeneazo -   | (NaOH) to a pinch of mixture.              |  |
| resorcinol – a dye) to the above solution. | - Pungent smell, colourless gas which      |  |
|                                            | turns turmeric paper brown.                |  |
| Sky blue ppt. – Mg <sup>2+</sup> confirmed | - NH4 <sup>+</sup> confirmed               |  |
|                                            | 2. Mix NaOH solution to the pinch of       |  |
|                                            | mixture, heat and add Nessler's            |  |
|                                            | reagent (K <sub>2</sub> HgI <sub>4</sub> ) |  |
|                                            | Brown ppt- NH4 <sup>+</sup> confirmed      |  |

#### **SEMESTER 2**

#### EXPERIMENT – 1

#### Aim

To determine the strength of a given solution of sodium hydroxide solution by titrating it against a standard solution of oxalic acid.

## Theory

The determination of the strength of a solution of an acid by titration with a standard solution of a base is called acidimetry, whereas when the strength of a solution of an alkali is determined by means of titration with standard solution of an acid is termed as alkalimetry.

This estimation involves titration of a weak acid that is oxalic acid against a strong base is sodium hydroxide and phenolphthalein is the indicator of choice. The reaction between oxalic acid and sodium hydroxide is

## $(COOH)_2 + 2NaOH \rightarrow (COONa)_2 + 2H_2O$

Since sodium hydroxide is not a primary standard a standard solution of oxalic acid is prepared and used for standardisation of sodium hydroxide.

In acid base titration at the end point the amount of acid becomes chemically equivalent to the amount of base present. In case of strong acid and strong base titration at the end point of solution the solution become neutral.

#### Materials Required

- 1. Burette
- 2. Pipette
- 3. Conical flask
- 4. Burette stand
- 5. Funnel
- 6. Stirrer
- 7. White glazed tile
- 8. Measuring flask
- 9. Oxalic acid (solid)
- 10.Sodium hydroxide solution
- 11. Phenolphthalein indicator

## Procedure

### (a) Preparation of 0.1M Standard Oxalic Acid Solution

- 1. Take a watch glass, wash it with distilled water and dry it.
- 2. Weigh the exact amount of clean and dried watch glass and record its weight in the notebook.
- 3. Weigh correctly on the watch glass 3.15 g of oxalic acid and record this weight in the notebook.
- 4. Using a funnel, transfer oxalic acid softly and carefully from the watch glass into a clean and dry measuring flask.
- 5. Wash the watch glass with distilled water to move the particles that stick to it into the foam with the assistance of a wash bottle.
- 6. For this purpose, the volume of distilled water should not exceed 50 ml.
- 7. Wash funnel several times with distilled water to move the sticking particles into the measuring flask using a wash bottle. Add water in tiny quantities while washing the funnel. The distilled water quantity used for this purpose should not exceed 50 mL.
- 8. Using a wash bottle, wash the funnel carefully with distilled water to pass the solution attached to the funnel into the measuring flask
- 9. Turn the flask of measurement until the oxalic acid dissolves.
- 10. Using a wash bottle, thoroughly add enough distilled water to the measuring flask just below the etched mark on it.
- 11.Add the last few mL of distilled water drop into the measuring flask until the reduced meniscus level just touches the mark.
- 12.Put the stopper on the mouth of the flask and shake softly to make the entire solution uniform. Calculate it as a solution of oxalic acid M/10.

## (b) Titration of Sodium Hydroxide and Oxalic Acid Solution

- 1. Rinse the burette with the standard oxalic acid solution.
- 2. Take 10cm<sup>3</sup> of oxalic acid solution in a titration flask. Fill the burette with sodium hydroxide solution.
- 3. Remove the air gap if any, from the burette by running the solution forcefully from the burette nozzle and note the initial reading
- 4. Pipette out 20ml of NaOH solution is a conical flask. Add 2-3 drops of phenolphthalein indicator to it.
- 5. Titrate the base with oxalic acid solution until pink colour disappears.
- 6. Repeat the titration till three concordant readings are obtained.

### Observations

- 1. Molarity of oxalic acid solution = M10
- 2. Molarity of sodium hydroxide solution = x
- 3. Volume of oxalic acid solution =  $10 \text{ cm}^3$
- 4. Indicator = Phenolphthalein
- 5. End point = Light pink colour

| S.No | Initial Reading of the Burette | Final Reading of the Burette | Volume of NaOH solution used | Concordant<br>Reading |
|------|--------------------------------|------------------------------|------------------------------|-----------------------|
| 1    | a cm <sup>3</sup>              | b cm <sup>3</sup>            | (b-a) cm <sup>3</sup>        | V cm <sup>3</sup>     |
| 2    | b cm <sup>3</sup>              | c cm <sup>3</sup>            | (c-b) cm <sup>3</sup>        | V cm <sup>3</sup>     |
| 3    | c cm <sup>3</sup>              | d cm <sup>3</sup>            | (d-c) cm <sup>3</sup>        | V cm <sup>3</sup>     |

#### Calculations

Mass of oxalic acid dissolved in 100ml of standard solution = y g

Strength of oxalic acid =  $y \times 10 \text{ g/L}$ Normality (N) of standard oxalic acid = Strength/ Eq.wt =  $y \times 1063.04 = N$ Normality (N<sub>1</sub>) of sodium hydroxide solution

 $N_1 \times V_1 = N \times V$ Therefore,

 $N_1 = N \times V/V1$ Normality (N<sub>2</sub>) of given oxalic acid solution

 $N_2 \times V_2 = N_1 \times V_1$   $N_2 = N1 \times V1/V2$ Strength of given oxalic acid =  $N_2 \times 63.04$  g/L

#### **Results and Discussion**

The strength of the given sodium hydroxide solution is \_\_\_\_\_ g/L.

Precautions

- 1. Weighing of oxalic acid crystals need weights of 2g + 1g + 100mg + 50mg.
- 2. While weighing do not spill the substance on balance pan.
- 3. Rotate the knob of balance gently.
- 4. Keep the weights in weights box at proper places after weighing
- 5. Wash the watch glass carefully so that even a single crystal is not left on the watch glass.
- 6. Bring the watch glass close to funnel while transferring weighed substance and transfer it gently. Wash it repeatedly with distilled water.
- 7. Wash the burette with water after titration is over.
- 8. Last few drops should be added using pipette to avoid extra addition of distilled water above the mark on the neck of the measuring cylinder.

#### **EXPERIMENT 2**

**AIM:-** Determine the number of molecules of water of crystallisation in ferrous ammonium sulphate FeSO<sub>4</sub> (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>.xH<sub>2</sub>O, 20 gm of which have been dissolved per litre Provided app.  $\frac{N}{20}$  KMnO<sub>4</sub> solution.

#### **APPARATUS REQUIRED:-**

Burette, conical flask, dropper, glass rod

#### **CHEMICAL REQUIRED:-**

FeSO<sub>4</sub> solution, KMnO<sub>4</sub>, mohr's salt

#### **THEORY:-**

Standardise KMnO<sub>4</sub> solution by titrating against  $\frac{N}{20}$  FeSO<sub>4</sub> solution, then ferrous ammonium sulphate is titrated against the standard KMnO<sub>4</sub> solution the calculate the value of x

Chemical equation:

 $2KMnO_4 + 3H_2SO_4 \quad \rightarrow \quad K_2SO_4 + 2MnSO_4 + 3H_2O + 5(O)$ 

$$\begin{split} & [2\text{FeSO}_4.(\text{NH}_4)_2\text{SO}_4.6\text{H}_2\text{O}] + \text{H}_2\text{SO}_4 + (\text{O}) \quad \rightarrow \quad \text{Fe}_2(\text{SO}_4)_3 + 2(\text{NH}_4)_2\text{SO}_4 + \\ & 13\text{H}_2\text{O}] \times 5 \end{split}$$

 $\begin{array}{rcl} 2KMnO_4 + 10FeSO_4.(NH_4)_2SO_4.6H_2O + 8H_2SO_4 & \rightarrow & K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + \\ & 10(NH_4)_2SO_4 + 68H_2O \end{array}$ 

First titration:- FeSO<sub>4</sub> against KMnO<sub>4</sub>

Indicator:- KMnO<sub>4</sub> acts as a self indicator

End point:- Appearance of light pink colour

#### **PROCEDURE:**-

- (i) Rins and fill the burette with KMnO<sub>4</sub> solution.
- (ii) Pipette out 20 ml of  $FeSO_4$  solution into a conical flask and then egg one test tube of dil.  $H_2SO_4$ .
- (iii) Then add KMnO<sub>4</sub> solution dropwise with shaking.
- (iv) At the end point light pink colour just appears.
- (v) Repeat the titration to get a set of three concordant readings.

## **OBSERVATION:-**

| Volume of | $\frac{N}{20}$ FeSO <sub>4</sub> taken each time = 20ml |
|-----------|---------------------------------------------------------|
|-----------|---------------------------------------------------------|

| S.No. | Initial reading | Final reading | Vol. Of KMnO <sub>4</sub><br>solution in ml |
|-------|-----------------|---------------|---------------------------------------------|
| 1.    |                 |               |                                             |
| 2.    |                 |               |                                             |
| 4.    |                 |               |                                             |
|       |                 |               |                                             |

Concordante volume = V ml

2<sup>nd</sup> Titration :- Ferrous ammonium sulphate against KMnO<sub>4</sub>

**Indicator:-** KMnO<sub>4</sub> acts as a self indicator

End point:- Appearance of light pink colour

#### **PROCEDURE:**-

- (i) Rins and fill the burette with  $KMnO_4$  solution.
- (ii) Pipette out 20 ml of Ferrous ammonium sulphate solution into a conical flask and then egg one test tube of dil. H<sub>2</sub>SO<sub>4</sub>.
- (iii) Then add KMnO<sub>4</sub> solution dropwise with shaking.
- (iv) At the end point light pink colour just appears.
- (v) Repeat the titration to get a set of three concordant readings.

#### **OBSERVATION:-**

| S.No. | Initial reading | Final reading | Vol. Of KMnO <sub>4</sub> |
|-------|-----------------|---------------|---------------------------|
|       |                 |               | solution in ml            |
| 1.    |                 | •••••         | •••••                     |
| 2.    | •••••           | •••••         | •••••                     |
| 3.    | •••••           | •••••         | •••••                     |
| 4.    | •••••           | •••••         |                           |
|       |                 |               |                           |

Concordant volume = X ml

**Calculations:-**

Ist titration:- Using normality equation

$$\mathbf{N}_1 \times \mathbf{V}_1 = \mathbf{N}_2 \times \mathbf{V}_2$$

(FeSO<sub>4</sub> solution) (KMnO<sub>4</sub> solution)

$$\frac{N}{20} \times 20 = N_2 \times V$$

N<sub>2</sub>, i.e., normality of KMnO<sub>4</sub> solution =  $\frac{N}{20} \times \frac{20}{V} = \frac{N}{V}$ 

2<sup>nd</sup> titration:- Again using normality equation

$$\mathbf{N}_1 imes \mathbf{V}_1 = \mathbf{N}_2 imes \mathbf{V}_2$$

(Ferrous ammonium sulphate solution) (KMnO<sub>4</sub> solution)

$$N_1 \times 20 = \frac{N}{V} \times X$$

 $\therefore$  N<sub>1</sub>, i.e., normality of ferrous ammonium sulphate =  $\frac{N}{V} \times \frac{X}{20}$ 

 $\therefore$  Strength of anhydrous ferrous ammonium sulphate = Normality  $\times$  Eq.wt.

=  $N_1 \times 284$ ( $\therefore$  eq. wt. Of anhydrous salt is 284)

Now using the relation

$$\frac{Mol.wt.of \ FeSO_4 \ (NH_4)2SO_4.xH_2O}{Mol.wt.of \ FeSO_4 \ (NH_4)_2SO_4} = \frac{Strengt \ h \ of \ hydrous \ salt}{Strengt \ h \ of \ anhydrous \ salt}$$
$$\frac{284 + 18x}{284} = \frac{20}{N_1 \ \times 284}$$

From above relation, the value of x can be calculated.

#### **PRECAUTIONS:-**

- (i) The apparatus should be cleaned and dried.
- (ii)Always place the KMnO<sub>4</sub> solution in the burette and read the upper surface of its meniscus as the lower one is not clearly visible.

- (iii) And about 20ml of dil.  $H_2SO_4$  to a solution before titrating with  $KMnO_4$  because of less amount is added then a brown ppt. Of hydrated  $MnO_2$  is formed.
- (iv) Never run large amount of KMnO<sub>4</sub> solution at a time otherwise a brown ppt. Of hydrated MnO<sub>2</sub> is formed

#### **RESULT:-**

Ferrous ammonium sulphate crystals have \_ \_ molecules of water of crystallisation.

### **EXPERIMENT – 3**

**AIM:-** Given solution was prepared by dissolving 4g of ferrous oxalate in dil.  $H_2SO_4$  and volume made to one litre. Determine volumetrically.

- (iii) % purity of the sample.
- (iv) % of oxalate ions in the sample.

Provided app.  $\frac{N}{20}$  KMnO<sub>4</sub> solution.

#### **APPARATUS REQUIRED:-**

Burette, conical flask, dropper, glass rod

#### **CHEMICAL REQUIRED:-**

FeSO<sub>4</sub>, ferrous oxalate, H<sub>2</sub>SO<sub>4</sub>, KMnO<sub>4</sub>

#### **THEORY:-**

Standardises KMnO<sub>4</sub> solution by titrating it against  $\frac{N}{20}$  FeSO<sub>4</sub> solution and then determined normality of ferrous oxalate by titrating it against KMnO<sub>4</sub> solution. Then % purity of the sample and % of oxalate ions can be calculated. Using normality equation

#### **CHEMICAL EQUATIONS:-**

$$2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]$$
  
$$2FeSO_4 + H_2SO_4 + O \rightarrow Fe(SO_4)_3 + H_2O$$
  
$$3FeC_2O_4 + 3H_2SO_4 + 3[O] \rightarrow Fe_2(SO_4)_3 + 4CO_2 + H_2O$$

Ist titration: FeSO<sub>4</sub> against KMnO<sub>4</sub>

Indicator : KMnO<sub>4</sub> acts as a self – indicator

End point: Just appearance of permanent light pink colour.

#### **PROCEDURE:-**

- (i) Rins and fill the burette with KMnO<sub>4</sub> solution.
- (ii) Pipette out 20 ml of  $FeSO_4$  solution into a conical flask and then egg one test tube of dil.  $H_2SO_4$ .
- (iii) Then add KMnO<sub>4</sub> solution dropwise with shaking.
- (iv) At the end point light pink colour just appears.

(v) Repeat the titration to get a set of three concordant readings.

## **OBSERVATION:-**

Volume of  $\frac{N}{20}$  FeSO<sub>4</sub> taken each time = 20ml

| S.No. | Initial reading | Final reading | Vol. Of KMnO <sub>4</sub><br>solution in ml |
|-------|-----------------|---------------|---------------------------------------------|
| 1.    | •••••           | •••••         | •••••                                       |
| 2.    |                 | •••••         | •••••                                       |
| 3.    |                 | •••••         | •••••                                       |
| 4.    |                 | •••••         | •••••                                       |
|       |                 |               |                                             |

Concordant volume = V ml

2<sup>nd</sup> titration: Ferrous oxalate against KMnO<sub>4</sub>

Indicator : KMnO<sub>4</sub> acts as a self – indicator

End point: Just appearance of permanent light pink colour.

## **PROCEDURE:-**

- (i) Rins and fill the burette with KMnO<sub>4</sub> solution.
- (ii) Pipette out 20 ml Ferrous oxalate solution into a conical flask and then egg one test tube dil.  $H_2SO_4$
- (iii) Heat the above solution on a wire gauze to  $60-70^{\circ}$ C.
- (iv) Then add KMnO<sub>4</sub> solution dropwise with shaking.
- (v) At the end point light pink colour just appears.
- (vi) Repeat the titration to get a set of three concordant readings.

#### **OBSERVATION:-**

Volume of Ferrous oxalate taken each time = 20ml

| S.No. | Initial reading | Final reading | Vol. Of KMnO <sub>4</sub> |
|-------|-----------------|---------------|---------------------------|
|       |                 |               | solution in ml            |
| 1.    | •••••           | •••••         | •••••                     |
| 2.    |                 | •••••         | •••••                     |
| 3.    |                 | •••••         |                           |

| 4. | ••••• | <br> |
|----|-------|------|
|    |       |      |

Concordant volume = X ml

## CACLCULATIONS:-

## 1<sup>st</sup> titration:

Using normality equation

 $N_1 \times V_1 = N_2 \times V_2$ (FeSO<sub>4</sub> solution) (KMnO<sub>4</sub> solution)

$$\frac{N}{20} \times 20 = N_2 \times V$$

N<sub>1</sub>, i.e., normality of KMnO<sub>4</sub> solution =  $\frac{N}{20} \times \frac{20}{V} \times \frac{N}{V}$ 

## 2<sup>nd</sup> titration:

Again using normality equation

$$N_1 \times V_1 = N_2 \times V_2$$
  
(Ferrous oxalate solution) (KMnO<sub>4</sub> solution)

$$N_1 \times 20 = \frac{N}{V} \times X$$

N<sub>1</sub>, i.e., normality of ferrous oxalate. =  $\frac{N}{V} \times \frac{X}{20}$ 

 $\therefore$  Strength of pure ferrous oxalate = Normality  $\times$  Eq.wt.

$$= \frac{N}{V} \times \frac{X}{20} \times 60 = x$$
 g/litre (say)

( $\therefore$  eq. Wt. Of ferrous oxalate = 60)

Weight of impure sample = 4g/litre

 $\therefore$  % purity of ferrous oxalate sample =  $\frac{X}{4} \times 100 = 25x$ 

Further amount of oxalate ions = Normality  $\times$  eq. Wt.

$$= \frac{N}{V} \times \frac{X}{20} \times 44 = \text{z/litre (say)}$$
  
(: eq. Wt. Of oxalate ions,  $C_2O_4^{2-} = \frac{88}{2} = 44$ )

 $\therefore$  % of oxalate ions in the smaple =  $\frac{Y}{4} \times 100 = a$  (say)

## **RESULT:-**

- i. % purity of sample 25 y
- ii. % of oxalate ions in the sample = a

## **EXPERIMENT - 4**

**AIM:-** Determine the percentage purity of given sample of Mohr's salt, 20 gm of which are present per litre of solution. Provided solid  $K_2Cr_2O_7$ .

#### **APPARATUS REQUIRED:-**

Burette, beaker, conical flask, glass rod

#### **CHEMICAL REQUIRED:-**

Mohr's salt, KgCr<sub>2</sub>O<sub>7</sub>, N-phenyl-anthracitic acid

#### **CHEMICAL EQUATIONS:-**

 $K_{2}Cr_{2}O_{7} + 4H_{2}SO_{4} \rightarrow K_{2}SO_{4} + Cr_{2}(SO_{4})_{3} + 4H_{2}O + 3[O]$   $FeSO_{4} (NH_{4})_{2}SO_{4}.6H_{2}O \xrightarrow{aq.} FeSO_{4} + (NH_{4})_{2}SO_{4} + 6H_{2}O$   $2FeSO_{4} + H_{2}SO_{4} + O \rightarrow Fe_{2}(SO_{4})_{3} + H_{2}O$ 

Indicator: N-phenyl anthranilic acid.

End point: Green to violet red.

#### Titration of mohr's salt against K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>

#### **PROCEDURE:**-

- i. Rins and fill the burette with  $K_2Cr_2O_7$  solution.
- ii. Pipette out 20ml of mohr's salt solution. Into titration flask and add about 100ml of  $2NH_2SO_{4}$ .
- iii. Add 5-10 drops of N-phenyl anthranilic acid.
- iv. Add  $K_2Cr_2O_7$  solution dropwise till the colour changes from green to violet wet.
- v. Repeat the titration to get a set of three cordant readings.

#### **OBSERVATIONS:-**

:.

Weight of empty watch galss = wg.

Weight of watch glass +solid  $K_2Cr_2O_7 = (w+0.6125)g$ 

Weight of solid  $K_2Cr_2O_7 = 0.6125g$ 

Volume of solution made = 250ml

$$\therefore \qquad \text{Normality of } \text{K}_2\text{Cr}_2\text{O}_{7 \text{ solution}} = \frac{Strengt \ h}{Eq.wt.} = \frac{0.6125}{49} = \frac{1}{20}$$

Volume of Mohr's salt solution taken each time = 20ml

| S.No. | Initial reading | Final reading | Vol. Of K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub><br>solution in ml |
|-------|-----------------|---------------|-------------------------------------------------------------------------|
| 1.    | •••••           |               | •••••                                                                   |
| 2.    |                 |               | •••••                                                                   |
| 3.    |                 |               | •••••                                                                   |
| 4.    |                 |               |                                                                         |
|       |                 |               |                                                                         |

Concordant volume = V ml

#### CALCULATIONS:-

Using normality equation

$$N_1 \times V_1 = N_2 \times V_2$$
  
(Mohr's salt) (K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> solution)

$$N_1 \times 20 = \frac{N}{20} \times V$$

N<sub>1</sub>, i.e., normality of Mohr's salt solution =  $\frac{V}{400}$ 

 $\therefore$  Strength of Mohr' salt solution = Normality  $\times$  Eq. Wt.

$$=\frac{V}{400} \times 392 = x \text{ g/litre (say)}$$

 $\therefore \qquad \text{percentage purity of Mohr's salt} = \frac{x}{20} \times 100$ 

#### **RESULT:-**

% purity of Mohr's salt  $=\frac{x}{20} \times 100$ 

#### **PRECAUTIONS:-**

- i. Burette should be rinsed with  $K_2Cr_2O_7$  solution before filling in the solution. Titration flask should be washed with distilled water after each titration.
- ii.  $K_2Cr_2O_7$  solution is always to be taken in the burette and its upper meniscus is to be considered while nothing the initial and final readings.