RPS DEGREE COLLEGE BALANA (MAHENDERGARH)-123029

Lab Manual

Chemistry (B.Sc.1st & 2nd Semester)

Department of Chemistry

CHEMISTRY

B.Sc. IIIrd Year

INDEX

SECTION – A: INORGANIC CHEMISTRY

1. SEMMICRO QUALITATIVE ANALYSIS

To analyse the given mixture for anions (acid radicals) and cations (basic radicals).

Pb²⁺, Hg²⁺, Ag⁺, Bi³⁺, Cu²⁺, As³⁺, Sb³⁺, Sn²⁺, Fe³⁺, Cr³⁺, Al³⁺, Co²⁺, Ni²⁺, Mn²⁺, Zn²⁺, Ba²⁺, Sr²⁺, Ca²⁺, Mg²⁺, NH₄⁺, CO₃²⁻, S²⁻, SO₃²⁻, S₂O₃²⁻, NO₂⁻, CH₃COO⁻, Cl⁻, Br⁻, l⁻, NO₃⁻, SO₄²⁻, C₂O₄²⁻, PO₄³⁻, BO₃³⁻

SECTION - B: PHYSICAL CHEMISTRY

- **1.** To determine the strength and normality of given acid solution (approx. $\frac{N}{10}$ HCl) by titrating it against standard 0.5 NaOH solution conductometrically.
- 2. To determine the strength of given weak acid (CH₃COOH) solution by titrating it against standard base (NaOH) solution conductometrically.
- **3.** To determine the normality and strength of given dibasic acid (oxalic acid) solution by titrating against standard NaOH solution conductometrically.
- **4.** To determine the solubility and solubility product of a given sparingly soluble salt conductometerically.
- 5. To determine the molecular weight of a non-volatile solute by Rast method.
- **6.** To standardize the given acid solution (like HCl) pH metrically.
- 7. To determine the strength of given mono basic acid (like HCl) potentiometrically.

SECTION – C: ORGANIC CHEMISTRY

1. Thin Layer Chromatography

To separate green leaf pigments by thin layer chromatography and determine their $R_{\rm f}$ values.

2. Laboratory Techniques

a) Colum Chromatography

To separate a mixture of coloured organic compounds (fluorescein and methylene blue) by column chromatography.

b) Steam distillation

To seprate a mixture of O- and p- nitrophenols by steam distillation.

3. Synthesis of the following organic compounds:

- **a)** To prepare O-chlororobenzoic acid from anthranilic acid.
- **b)** To prepare p-Bromonaniline from p-Bromoacetanilide.
- **c)** To prepare m-nitroaniline from m-dinitro benzene.
- **d)** To prepare S-Benzyl iso thiouronium chloride from thiourea.

Section – A (INORGANIC)

SCHEME OF MIXTURE ANALYSIS

The scheme of mixture analysis involves the following three main steps:-

- 1. Preliminary Tests.
- 2. Wet Tests for Anions or Acid radicals.
- 3. Wet Test for Cations or Basic radicals.

Wet Tests :- For wet tests, the solution of given mixture is required.

- I. Water extract (WE) :- Dissolve small amount of the given mixture in distilled water. If the mixture is almost soluble then it is filtered and the filtrate is taken as water extract.
- II. Sodium carbonate extract (SE) :- If the given mixture is insoluble in water then mix about 1g of Na_2CO_3 in the above solution, boild and filtered. The filtrate is taken as sodium carbonate.
 - 1. PRELMINARY TESTS:-

Some of common preliminary test are :-

- I. Colour and smell :- Note down the colour and smell of the given mixture.
 - (a) Colour

Dark green - Cr Salt Light green - Ferrous salt Green - Ni Salt Blue green - Cu Salt Dark brown - Ferric salt Yellow - Ferric salt Light pink - Mn salt Pink violet - Co salt White - Cu²⁺,Fe²⁺,Fe³⁺,Cr³⁺,Co²⁺,Ni²⁺,Mn²⁺ etc absent

(b) Smell

Vinegar smell - CH₃COO⁻

Ammonical Pungent smell - NH_4^+ salt

Rotten egg smell - S²⁻

II. Dry Heating Test :- Heat a small amount of mixture in a dry test tube to get following inference.

Observation	Inferences
Colourless, odourless gas which turns lime water, milky –Co ₂	CO ₃ ²⁻
Colourless gas with rotten egg smell - H ₂ S gas	S ²⁻
Colourless gass which turns dichromate paper green –SO ₂	SO_3^{2-} and $S_2O_3^{2-}$
gas	
Colourless gas with Vinegar smell.	CH₃COO ⁻
Colourless gas with ammonical smell –NH ₃	NH_4^+ salt
Brown gas which turns FeSO ₄ solution black –NO ₂	NO ₂ or NO ₃
Reddish brown gas which turns starch paper yellow – Br ₂	Br
Greenish yellow gas which bleaches moist litmus paper – Cl_2	Cl
Violet gass which turns starch paper blue – I_2	ſ
Yellow colour when hot and white colour when cold	Zn salt
Brown colour when hot and yellow colour when cold	Pb salt
Cracking noise	Pb (NO ₃) ₂

III. Charcoal Cavity Test :- Add a pinch of given mixture with twice its amount of anhydrous Na₂CO₃ and place in charcoal cavity add water heat in a reducing flame to get following in inferences.

Observation	Inferences
Red scales	Cu salt
Yellow residue on heating and white on cooling	Zn salt
Brown residue when hot and yellow when cold	Pb salt
White residue	Ba, Al, Ca, Mg salt
Black residue	No inference

IV. Cobalt Nitrate Test:- To the white residue is obtained in charcoal cavity then added a drop of cobalt nitrate solution and heat in an oxidizing flame to get the following inferences.

Observation	Inference
Green residue	Zn salt
Blue residue	Al salt
Pink residue	Ba salt

V. Borax Bead Test:- The test is applicable only for the coloured salt heat a crystal of borax (Na₂B₄O₇.10H₂O) on a clean Pt. –wire loop till a transparent glassy mass is obtained. Touch this glassy mass with coloured mixture and again heated in an oxidizing flame.

Observation	Inference
Pink bead	Mn salt
Yellow when hot and cold	Fe salt
Deep blue bead	Co salt
Reddish brown when cold	Ni salt
Green when hot, blue when cold	Cu salt
Dark green bead	Cr salt

VI. **Flame Test:-** Mix a pinch of mixture with conc. HCl and dipped the loop of Pt-wire in it and put the loop at the base of a non luminous flame of the burner and observe the colour of the flame to get the following inferences.

Observation	Inference
Brick red flame	Ca salt
Grassy green flame	Ba salt
Crimson red flame	Sr salt

VII. **Dilute H_2SO_4 Test:-** Mix few ml of H_2SO_4 to a pinch of given mixture and note the reaction.

Observation	Inference
Brown gas which turns FeSO ₄ solution black – No ₂ gas	No ₂
With brisk effervescence colourless, odourless gas which	CO ₃ ²⁻
turns lime water milky	
Rotten egg smell gas with no colour	S ²⁻
Colourless gas which turns dichromate paper green	$SO_3^{2-} \text{ or } S_2O_3^{2-}$
No action with dil. H_2SO_4	$CO_3^{2^-}$, S^{2^-} , $SO_3^{2^-}$, $S_2O^{2^-}$ and
	NO_2^- are absent

VIII. **KMnO₄ Test:-** From the solution, boil off all the gases and mix 2 drops of KMnO₄ solution and note the observation.

Observation	Inference
Pink colour is discharged with a evolution of a gas	OX ²⁻ , Cl ⁻ , Br ⁻ or l ⁻
Pink colour is discharged without evolution of any gas	NO ₂
Pink colour is not discharged	$NO_2^{-}, Cl^{-}, Br^{-}, l^{-} and OX^{2-}$ are
	absent

IX. **Conc.** H_2SO_4 **Test:-** With about 5ml conc. H_2SO_4 , heat a pinch of given mixture and not the change.

Observation	Inference
Brown gas which becomes dense by mixing copper turning	NO ₃ ⁻ present
Pungent smelling, colourless gas which gives dense white	Cl ⁻ may be absent
fumes with ammonia – HCl	
Brown gas, which is not affected by mixing copper turning	Br ⁻ present
and turns starch paper yellow – Br_2 gas	
Violet gas which turns starch paper blue – I_2 gas	l ⁻ present
Vinegar smell gas –CH₃COOH	CH ₃ COO ⁻ present
No reaction with conc. H_2SO_4	CO ₃ ²⁻ , S ²⁻ , SO ₃ ²⁻ ,
	S ₂ O ₃ ²⁻ , Cl ⁻ , Br ⁻ l ⁻ ,
	NO_3^- , CH_3COO^- are
	absent.

2. Wet Tests for Anions or Acid radicals:- These are the wet tests as the mixture is treated in the form of its water extract (WE) for sodium carbonate extract (SE) with the reagents.

Test for CO₃²⁻

	Experiment	Observation	Inference
١.	Add about 5ml distilled	A. Residue	For insoluble CO ₃ ²⁻ in
	water to a small amount of	B. Filtrate	residue soluble CO ₃ ²⁻ in
	mixture, shake and filtered.		filterate
П.	To one part of filtrate mix	Brisk effervescence with	Soluble CO ₃ ²⁻ present.
	few ml of dil. HCl.	the evolution of	
- 111.	Pass the gas evolved through	colourless gas.	
	the lime water.	Turns milky	Soluble CO ₃ ²⁻ Confirmed
IV.	Mix few drops of MgSO ₄		
	solution to the portion of	White ppt. formed	Soluble CO ₃ ²⁻ Confirmed.
	filtrate.		
V.	For insoluble CO ₃ ²⁻		
	To the residue add few	Brisk effervescence with	Insoluble CO ₃ ²⁻
	drops of dilute HCl	the evolution of	Confirmed
		colourless, odourless gas.	

Test for Sulphide ion, (S²⁻) :-

Experiment	Observation	Inference
 To S.E. add to drops of sodium nitroprusside solution. 	Purpul Colour	S ²⁻ confirmed
 To S.E. add 2-3 drops of acetic acid and lead acetate solution 	Black ppt.	S ²⁻ confirmed

Test for Sulphite ion (SO₃²⁻) :-

Experiment	Observation	Inference
1. To the 2-3 drops of SE, add	Green colour obtained	Sulphite ion confirmed
few drops of dil. H ₂ SO ₄ and		
few drops of Potassium		
dichromate solution.		
2. To SE, add 2-3 drops of $BaCl_2$	White ppt. which on	SO ₃ ²⁻ confirmed
solution.	treatment with dil. H ₂ SO ₄	
	to give SO ₂ gas	

Test for Thiosulphate ion $(S_2O_3^{2-})$:-

Experiment	Observation	Inference
1. To SE, add few drops of	Violet or purple colour	$S_2O_3^{2-}$ confirmed
freshly prepared FeCl ₃ solution.	which fades on standing	
 Add few drops of AgNO₃ solution to SE. 	White ppt. changing to yellow, orange, brown and finally black	$S_2O_3^{2-}$ confirmed

Test for nitrite ion, (NO₂⁻) :-

Experiment	Observation	Inference
1. To the water extract add 2-3	Black colour	NO ₂ ⁻ confirmed
drops of ferrous sulphate		
solution.		
2. To water extract add 2-3	Deep blue colour	NO ₂ ⁻ confirmed
drops of diphenylamine.		
3. Add dil. H_2SO_4 to a pinch of	Pink colour is discharged	NO ₂ ⁻ confirmed
mixture. Boil off gas evolved		
and mix 2 drops of KMnO ₄		
solution.		

Confirmatory tests or wet tests or acid radicals which do not react with dilute H_2SO_4 like Cl⁻, Br⁻, l⁻, NO₃⁻, CH₃COO⁻, oxalate ion

Test for Nitrate ion (NO₃):-

Experiment	Observation	Inference
1. Add few drops of conc.	Dark brown fumes of NO ₂ gas	NO ₃ ⁻ confirmed
H_2SO_4 to a pinch of	evolved	
mixture, boil and then		
add few copper turnings.		
2. Ring test:- To the WE	At the junction a dark brown	NO ₃ ⁻ confirmed
add few drops of freshly	ring is formed of two layers	
prepared FeSO ₄ solution.		
Shake and add few drops		
of conc. H_2SO_4 along the		
side of test tube.		

Test for Chloride ion (Cl⁻):-

Experiment	Observation	Inference
1. To WE add AgNO ₃	White ppt. soluble in NH ₄ OH.	Cl ⁻ present
solution.		
2. Chromyl Chloride test:-	Red vapours of Chromyl	Cl ⁻ present
Heated a pinch of	Chloride are formed	
mixture with solid		
$K_2Cr_2O_7$ and few ml of	Yellow colouration	Cl ⁻ present
conc. H ₂ SO ₄ pass the red		
vapours through NaOH		
solution.		
To the yellow colour	Yellow ppt. soluble in NaOH	Cl ⁻ present
solution add dil. Acetic	solution	
acid and lead acetate		
solution.		

Test for Bromide ion (Br⁻) :-

Experiment	Observation	Inference
1. CS ₂ or CCl ₄ Test:- To the	Orange coloure in CS_2 or CCI_4	Br ⁻ confirmed
WE add 4-5 drops of CS ₂	layer	
or CCI_4 and few ml of		

freshly prepared		
chlorine water and shake		
thoroughly.		
2. Add few drops of AgNO ₃	Light yellow ppt. partially	Br ⁻ confirmed
solution to the WE.	soluble in NH₄OH	

Test for iodide (I⁻) :-

Experiment	Observation	Inference
1. CS_2 or CCl_4 Test:- To the	Purple violet colour in CCl ₄	l ⁻ Confirmed
WE or SE after boiling off	layer	
CO ₂ by heating with		
dilute HNO ₃ , add few		
drops of CS_2 or CCI_4 and		
then add freshly		
prepared chlorine water		
with constant shaking.		
2. To the WE or SE after	Yellow ppt. insoluble in	l ⁻ Confirmed
boiling off CO ₂ , add	NH₄OH	
AgNO ₃ solution.		

Wet Test for Acetate (CH₃COO⁻) :-

Experiment	Observation	Inference
1. Ester test:- Heat a pinch	A fruity smell of ethyl acetate	CH ₃ COO ⁻ confirmed
of mixture with small		
conc. H_2SO_4 and few		
drops of ethyl alcohol.		
2. $FeCl_3$ Test:- To the WE	Blood red colour	CH ₃ COO ⁻ confirmed
add 2-3 drops of neutral		
FeCl ₃ solution.		

Wet Test for oxalate ion :-

Experiment	Observation	Inference
1. Heat a pinch of mixture	A mixture of CO and \mbox{CO}_2	Oxalate ion may be

with conc. H ₂ SO ₄	evolved	present
2. To a part of SE, add dil.	White ppt.	Oxalate ion confirmed
acetic acid. Boil of all		
gases and then cool. Add		
few ml of CaCl ₂ solution.		
3. Filter the solution and	Pink colour of KMnO ₄	Oxalate ion confirmed
wash the ppt. with	discharge with evolution of	
distilled water and	CO ₂	
extract the ppt. with		
about 1 ml of dil. H_2SO_4		
added about two drops		
of KMnO ₄ solution.		

Wet Test for acidic radicals which do not react both with dil. H_2SO_4 like SO_4^{2-} , PO_4^{3-} , BO_3^{3-}

Test for sulphate ion SO₄²⁻ :-

Experiment	Observation	Inference
1. BaCl ₂ Test:- To few ml of	White ppt. of BaSO ₄	SO ₄ ²⁻ confirmed
SE, add dil. HCl, boil off		
all gases and then cool.		
Then add 3-4 drops of		
BaCl ₂ solution.		
2. Match – stick Test:- Filter	Purple streaks	SO ₄ ²⁻ confirmed
the solution and wash		
the ppt. with distilled		
water mix the ppt. with		
twice the amount of		
Na_2CO_3 . Apply a part of		
the mixture on wooden		
part of match stick. Heat		
the and in reducing		
flame till charred mass.		
Through this mass in		
sodium nitroprusside		

solution taken in china dish.		
3. Lead Acetate Test:- Boil	White ppt.	SO ₄ ²⁻ confirmed
S.E. will dil. Acetic acid in		
a test tube and then add		
lead Acetate Solution.		

Test for Borate ion (BO₃³⁻):-

Experiment	Observation	Inference
1. In a few drops of ethyl	A green edged flame	BO ₃ ³⁻ confirmed
alcohol add few drops of		
conc. H_2SO_4 to a pinch of		
mixture taken in china		
dish. Heat the mixture		
and ignite the vapours		
so evolved.		
2. Turmeric paper Test:-	Turmeric paper turns	BO ₃ ³⁻ confirmed
Dissolve few mg of the	greenish brown	
mixture in few drops of		
dil. HCl. Dip turmeric		
paper in the above		
solution and wrap it		
around the neck of semi		
 micro tube containing 		
water. Boil the water to		
dry the turmeric paper.		
/····		

Test for Phosphate (PO₄³⁻) :-

Experiment	Observation	Inference
1. Megnesia mixture:- To a	White ppt.	PO ₄ ³⁻ confirmed
part of SE add dil. HCl,		
boil of CO_2 gas and cool.		
Add NH ₄ OH solution till		
alkaline and then add		

few drops of magnesia mixture (equal amounts of MgSO ₄ , NH ₄ Cl and NH ₄ OH solution).		
 Ammonium Molybdate Test:- Add few drops of conc. HNO₃ to a part of mixture, boil and then add a pinch of solid ammonium molybdate solution, boil again. 	Yellow ppt.	PO₄ ³⁻ confirmed

- 3. Wet Test for Cations or Basic radicals:- The classification of cations in the six groups is based upon the fact that the radicals belonging to a particular group are precipitated by some specific group reagent. A group reagent is that which have following properties:-
 - 1) For the complete precipitation of the cations of particular group, it should be effective.
 - 2) The resulting precipitate must easily dissolve in acid to get the cation in the form of solution.
 - 3) For a specific group cation, it should be specific.

The scheme for separating cations or basic radicals into six analytical groups is shown as follows:-

	Group I	IIA	IIB		IV	V	VI
Cations	Ag++′	Hg ²⁺ ,Pb ²⁺	As ³⁺	Fe ³⁺ ,	Co ²⁺ ,Ni ²⁺	Ba ²⁺ ,Sr ²⁺	Mg ²⁺
	HG_2^{2+}	Bi ³⁺ , Cu ²⁺	Sb ³⁺	Al ³⁺ ,	Mn ²⁺ ,	Ca ²⁺	Na^+,K^+
	Pb ²⁺	Cd ²⁺	Sn ²⁺	Cr ³⁺	Zn ²⁺		NH^+_4
Group	Dil.HCl	H_2S gas in	H_2S gas	NH₄OH	H_2S gas	(NH ₄) ₂ Co ₃	No
Reagent		presence	in	in	in	in	group
		of dil. HCl	presence	presence	presence	presence	reagent
			of dil.	of NH ₄ CL	of dil.	of NH ₄ Cl	
			HCI		HCI	$\& NH_4OH$	

Original solution (OS) :- original solution is clear solution of the mixture which is prepared

- (i) By using distilled water (DW) and dil. HCl Or
- (ii) By using distilled water and conc. HCl

Wet Test for group –I Cations :- To the OS, add to drops of dil. HCl. If precipitate appears, then add more HCl to make precipitation complete. Centrifuge and wash the ppt. with distilled water and reserve the filtrate for the analysis of Group II cations.

White ppt. - for Group I cation

Filtrate or supernate - for group II cation

With few ml of distilled water boil the white ppt. and filter.

-ppt. for Hg_2^{2+} and Ag^+

Filtrate for Pb²⁺ as PbCl₂

ppt. (for Hg ₂ ²⁺ and Ag ⁺)	Filterate (for Pb ²⁺)	
With hot water wash the ppt., centrifuge	Filtrate is classified into two parts	
and reject the filtrate. Add few drops of dil.	1) To one part add few drops	
Ammonia solution to the ppt. and	potassium chromate solution	
centrifuge.	(yellow ppt.)	
Centrifuge :-	2) To second part add few drops KI	
I- Black residue (for Hg ₂ ²⁺) :- add	solution (yellow ppt.)	
stannous chloride to the solution of	-Pb ²⁺ confirmed	
mercurous salt. White ppt. turns gray		
– Hg ₂ ²⁺ confirmed		
II- Supernate or filtrate (for Ag^+) :- To		
filtrate add few drops of dil. HNO ₃		
-white ppt. – Ag⁺ confirmed		

Group II :- If Group I cation is present, then take the filterate of Group I and pass H₂S gas. To OS add dil. HCl and pass H₂S gas.

ppt. – for Group II cations

Filtrate - for Group III

Ppt - contain Pb²⁺,Hg²⁺,Bi³⁺, Cu²⁺, Cd²⁺, As³⁺ Sb³⁺ , Sn²⁺ in the form of their sulphide.

Analysis of cation of IIA or II B in the acidic OS after passing H_2S gas, the ppt. obtained centrifuge and wash the ppt. with distilled water. For group III reserve the filtrate.

Coloured ppt. – for group II	ppt. fo	r group II
Mix few ml of yellow ammonium sulphide to the above ppt. shake and warm the content and centrifuge. In a beaker, decant off the liquid portion to the remaining ppt. add 2 ml of yellow ammonium sulphide,	Ppt – for group IIA Filterate - for grou Analysis of group I	p IIB
 Analysis of group II-B cation:- To the above filtrate add acid dil. HCl to make the solution. Warm the solution and centrifuge to the ppt. mix 2 ml of distilled water and 5 ml conc. HCl and warm. Centrifuge and wash the ppt. with dil. HCl Yellow ppt – for As³⁺ Filterate – for Sb³⁺, Sn⁴⁺ 	Residue:- -Black residue for Hg ²⁺ With the help of the water wash the residue boil the ppt. with conc. HCl and pinch of potassium	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	chlorate. Boil of cases and then mix SnCl ₂ solution. White ppt. turns grey - Hg ²⁺ confirmed	-

Coloured ppt for Group II	Filterate – Group III
Test for As ³⁺ :-	Ppt for Pb ²⁺

Wash the ppt. with hot water boil with	Filterate for Bi, Cu, Cd-	
few ml conc. HNO_3 and then mix few	Wash the ppt. with H_2O reject is washing mix	
drops of ammonium molybdate.	few drops of conc. Ammonium acetate and	
Yellow ppt. – As ³⁺ confirmed	heat with shaking ppt. dissolve mix few drops	
Test for Sb ³⁺ and Sn ³⁺	potassium chromate solution and few drops	
The filterate is divided into two parts :-	of acetic acid.	
1) Mix few mg of oxalic acid to one		
part and pass H_2S gas.	Yellow ppt. – Pb ²⁺ confirmed	
-orange ppt Sb ³⁺ confirmed	Tests for Bi, Cu, Cd:-	
2) Warm the second part with a piece	Add conc. Ammonia drop wise (in excess)	
of Al metal. Centrifuge if any ppt.		
reject them. To filterate add 5ml	Centrifuge :-	
HgCl ₂ .	(i) Ppt for Bi ³⁺	
 White ppt. – Sn⁴⁺ confirmed 	(ii) Filterate for Cu ²⁺ , Cd ²⁺	
	In the ppt., add few drops of sodium stannite	
	solution	
	It turns black – Bi ³⁺ confirmed	
	For Cu ²⁺ and Cd ²⁺ :-	
	Divide the filterate in two parts.	
	1) Mix dil. HCl and few drops of potassium	
	ferrocyanide solution to one part of the	
	filterate	
	Reddish colour – Cu ²⁺ confirmed	
	2) Mix KCN solution to the second part of	
	the filterate till blue colour disappears	
	Pass H ₂ S gas – yellow ppt.	
	- Cd ²⁺ confirmed	

Analysis of group III cations (Fe³⁺, Cr³⁺, Al³⁺)

From filterate of group – II, boil off H_2S gas mix few drops of conc. HNO_3 , boil and cool the content. Now mix solid NH_4Cl again, boil and cool. Then add NH_4OH solution in excess.

Centrifuge

- Ppt for group III

- Filterate for group IV

Mix 2 ml distilled water and few mg sodium peroxide to the ppt. Boil, cool and centrifuge.

Brown ppt. for Fe ³⁺	Filterate for Cr ³⁺ and Al ³⁺
Dissolve the ppt. dil. HCl.	Divide the filterate into two parts
Divide the solution in two	1) Add few drops of lead acetate solution
parts:-	and dil. HCl to one part of the filterate
1) Mix KCNS solution to	- Yellow ppt
first part of the solution.	- Cr ³⁺ confirmed
Blood red colour	2) Mix few mg NH ₄ Cl to the second part of
- Fe ³⁺ confirmed	the filterate.
2) Mix potassium	- White gelatinous ppt.
Ferrocyanide solution	
to the second part of	Dissolve the ppt in dil. HCl and then
the solution.	add few drops of blue litmus solution
Deep blue colour ppt.	and mix NH ₄ OS dropwise
- Fe ³⁺ confirmed	- Blue ppt.
	- Al ³⁺ confirmed

Analysis of Group IV cations (Co²⁺,Ni²⁺, Mn²⁺,Zn²⁺)

To the filterate of group III, mix NH_4OH solution in excess and pass H_2S gas.

Centrifuge

-ppt for group IV - filterate for group V

Mix the ppt. with HCl, Shake and centrifuge

Black ppt. for Co ²⁺ and Ni ²⁺	Filterate for M	In ²⁺ and Zn ²⁺
Take the ppt. to china dish, mix	Boil off H ₂ S gas, cool a	and add few ml NaOH
conc. HCl and a crystal of KClO ₃ .	solution and then add few drops of H ₂ O ₂ . Heat the	
Evaporate the solution till	content & centrifuge.	
dryness and observe the colour		
of the residue.	Dark brown ppt. (for	Filterate (for Zn ²⁺):-
- Blue or green colour – for	Mn ²⁺):-	

Co ²⁺		Ppt. divide into two	Filterate divide into
- Yellow co	lour - for Ni ²⁺	parts :-	two parts:-
To the residue r	nix few ml of	1. Mix few ml conc.	1. Mix few drops of
distilled water.		HNO ₃ and pinch of	dil. HCl and
Divide the solut	tion into two	PbO ₂ to one part	potassium
parts.		of ppt. Boil, cool	ferrocyanide to
For Co ²⁺ :-	For	and dil. with	one part of the
Ni ²⁺ :-		distilled water.	filterate
		- Pink colour	- Bluish white ppt.
Mix few	Mix few drops	- Mn ²⁺ confirmed	- Zn ²⁺ confirmed
crystal of	of dimethyl		2. To the second
ammonium	gloxime and		part of the
sulphocyanide	NH ₄ OH to		solution of
and amyl	second part of		filterate pass H ₂ S
alcohol with	the solution	2. Borax bead test:-	gas
shaking	- Bright	Apply borax bead	- Dirty white ppt.
- Blue	red	test to the second	- Zn ²⁺ confirmed
colour	colour	portion of ppt.	
in	- Ni ²⁺	- Pink bead	
alcohol	confirme	- Mn ²⁺ confirmed	
layer	d		
- Co ²⁺			
confirm			
ed			

Analysis of Group V Cation (Ba²⁺,Sr²⁺,Ca²⁺):-

From filterate of group IV, boil off H_2S gas mix solid ammonium nitrate. Boil the content, cool and then mix NH_4Cl and few drops of NH_4OH . Now mix Ammonium carbonate solution and scratch the sides of test tube for few minutes.

Centrifuge:-

- white ppt. for group V

- filterate for group VI

The above white ppt. dissolved in small amount of acetic acid and boil off CO_2 gas, cool and mix few drops of Pot. Chromate and then centrifuge.

Residue:-	Filterate :- For Sr ²⁺	and Ca ²⁺
- Yellow ppt.	To the filterate mix	x ammonia dropwise and
- Ba ²⁺ confirmed	then mix an excess	s of ammonium sulphate.
Wash the ppt. with water and reject the	Boil, cool and cen	trifuge. If no white ppt.
washings.	Sr ²⁺ is absent.	
Flame test :- Apply flame test with the ppt.	White ppt. :-	Filterate for Ca ²⁺ ion:-
- Grassy green flame	Sr ²⁺ confirmed	To above filterate mix
- Ba ²⁺ confirmed	Flame test :-	ammonium oxalate
	Apply flame test	solution and wait for 2-
	with the ppt.	3 minutes.
	- Crimson	
	red flame	White ppt. –
	- Sr ²⁺	Ca ²⁺ confirmed
	confirmed	Flame test :- Apply
		flame test with the ppt.
		- Brick red flame
		- Ca ²⁺ confirmed

Analysis of Group VI - (Mg²⁺, NH₄+):-

From group V heat the filterate to dryness, cool and mix few drops of conc. HNO₃. Again heat to dryness and dissolve the residue in few ml of distilled water.

Test for Mg ²⁺	Test for NH ₄ ⁺	
Mix few drops of Magneson reagent (an	1. Mix strong solution of caustic soda	
alkaline solution of p-nitrobenzeneazo -	(NaOH) to a pinch of mixture.	
resorcinol – a dye) to the above solution.	- Pungent smell, colourless gas which	
	turns turmeric paper brown.	
Sky blue ppt. – Mg ²⁺ confirmed	- NH4 ⁺ confirmed	
	2. Mix NaOH solution to the pinch of	
	mixture, heat and add Nessler's	
	reagent (K ₂ HgI ₄)	

	Brown ppt- NH₄ ⁺ confirmed

Section – B (Physical)

EXPERIMENT – 1

AIM:- To determine the strength and normality of given acid solution (approx. $\frac{N}{10}$ HCl) by titrating it against standard 0.5 NaOH solution conductometrically.

THEORY:-

Substances which allow electricity to pass through them are known as conductors. Conductors are divided into two classes:-

- i. Metallic or electronic conductors
- ii. Electrolytic conductors

The conductance of the solution of an electrolyte depends upon following factors:-

- i. Nature of the electrolyte
- ii. Concentration of the solution
- iii. Speed of the ion

In conductometric titrations, the conductance of electrolytic solution are measured with the help of conductometer.

When we titrate the strong acid with strong base, in the starting the conductance is high and then decreases till end point end after end point the conductance is increases.

PRINCIPLE:-

The basic principal of such titrations is that when the addition of solution of one electrolyte to another electrolyte solution, ions of latter solution are replaced by those of the former and hence the conductance changes. In this titration, the mixing of NaOH to HCl will cause the conductivity change due to replacement of highly mobile H⁺ ions by lower mobile Na⁺ ions. A particular type of curve is obtained which intersect at a point no age equilvalence point or end point. During the titration of HCl solution against NaOH solution, the following reaction takes place:-

CHEMICAL REACTION $H^{+}CI^{-}+Na^{+}OH^{-} \rightarrow Na^{+}CI^{-}+H_{2}O(I)$

When the solution of HCl is to be titrated against NaOH, the acid solution is taken in the beaker and NaOH solution is taken in the burette. The conductance of the acid solution is noted initially and after each successive mixing of small amount of NaOH solution, the change in conductance is recorded and plotting the graph. In the beginning the conductance of the acid is very high because it contains highly mobile H⁺ ions. As NaOH solution is added to HCl solution, highly mobile H⁺ ions are replaced by slow mobile Na⁺ ions and conductance of the solution keep on decreasing till the end point is reached. After the end point is reached, the addition of NaOH brings the fast moving OH⁻ ions and the conductance again start increasing.

CHEMICAL USED:-

1. Standard NaOH

2. Approx.
$$\frac{N}{10}$$
 HCl solution

APPARATUS USED:-

- 1. Conductometer
- 2. Conductivity cell
- 3. Beaker
- 4. Burette
- 5. Pipette

PROCEDURE:-

- 1. Take a definite volume (20 ml) of given 0.1 N HCl in a beaker. Adding distilled water so that the electrodes of conductivity cell completely dip in the solution.
- 2. Wash the conductivity cell with distilled water, dip in HCl solution and connect it to conductometer.
- 3. Noted the conductance.
- 4. Rinse and fill the burette with 0.5 NaOH solution.
- 5. Now mix 0.5 ml of NaOH solution from the burette into beaker containing HCl solution.
- 6. After each addition, stir the contents thoroughly and note down the conductance.
- 7. Repeat the procedure.

OBSERVATION:-

Volume of given acid solution taken = 20 ml Normality of standard NaOH = $\frac{N}{2}$ (0.5N)

Sr. No.	Volume of NaOH Added (ml)	Observed conductance (ohm ⁻¹)
1.	0.0	
2.	0.5	
3.	1.0	
4.	1.5	
5.	2.0	
6.	2.5	
7.	3.0	

8.	3.5	
9.	4.0	
10.	4.5	
11.	5.0	
12.	5.5	
13.	6.0	
14.		
15.		

CALCULATION:-

Suppose volume of NaOH required for neutralization = V_2 ml Plot volume of NaOH (in ml) along x-axis, and the observed conductance along y-axis.

By using normality equation,

	$N_1V_1 = N_2V_2$ (HCl) (NaOH) $N_1 \times 20 = 0.5 \times V_2$
\div N11 is normality of given HCl	$=\frac{0.5\times V_2}{20}=\mathbf{y}$
∴ Strength of HCl	= Normality × eq. wt. of HCl
	$N_1 \times 36.5 = y \times 36.5$
	= W g/litre

PRECAUTIONS:-

- 1. The apparatus should be rinsed and cleaned properly before use.
- 2. After each mixing of the NaOH, the solution should be thoroughly stirred.
- 3. Rinse the electrodes of the conductivity sell thoroughly(with the given acid) before starting the experiment
- 4. A strong solution of NaOH should be taken, the solution of NaOH should be about five times stronger then HCl solution.

EXPERIMENT – 2

AIM:- To determine the strength of given weak acid (CH₃COOH) solution by titrating it against standard base (NaOH) solution conductometrically.

THEORY:-

In conductometric titrations the conductivity of a solution depends upon the number of ions and their conductance. The solution of electrolyte are used to find out the conductance with the help of conductometer. During the titrations the nature and sometimes concentration of ionic reactants is changed. This is because the conductance of the solution is changed. PRINCIPLE:-

The principle of such titration is the substitution of ions of one conductance by ions of another conductance. Therefore, by the addition of definite volume of the solution of one electrolyte into the fixed volume of the solution of another electrolyte the conductance change is determined.

In case of weak acid (like CH₃COOH) against strong base (NaOH), the curve shape is found different.

CHEMICAL REACTION:-

CH₃COOH (aq) + Na⁺ + OH⁻ $\xrightarrow{-H_2O}$ CH₃COO⁻ + Na⁺ + H₂O (I)

At the end point, an abrupt change occurs in the slope of the conductance titrant volume graph. Before and after the end point the curve segments are linear.

The conductance of the acid initially is very low because of low ionization of weak acetic acid. With the addition of more and more NaOH, the conductance keeps on increasing, as the number of ions in solution increasing. But the increase is slow due to low mobility of CH_3COO^- ions. After the complete neutralization of CH_3COOH , further addition of NaOH results in increase in the conductance of the solution due to increase in number of high mobile Na⁺ and OH⁻ ions.

The point of intersection tells the exact volume of NaOH used for complete neutralization.

CHEMICAL USED:-

- 1. Standard NaOH solution
- 2. CH_3COOH solution

APPARAUTS USED:-

- 1. Beaker
- 2. Pipette
- 3. Burette
- 4. Conductometer
- 5. Conductivity cell

PROCEDURE:-

- 1. Take twenty ml of given CH₃COOH solution in a beaker. Dilute the solution so that conductivity cell dips in the solution.
- 2. Wash the conductivity cell with distilled water and connect it to conductometer.
- 3. Dip the cell in acetic acid and find out the conductance.
- 4. From the burette, mix 0.5 ml an of NaOH solution into CH₃COOH solution with shaking and note down the observed conductance.
- 5. Repeat the above procedure on recording the observed conductance.
- 6. Plot the graph between the observed conductance and volume of NaOH mixed and find out the volume of NaOH required complete neutralization.

OBSERVATION:-

Volume of given acetic and solution taken = 20 ml Normality of NaOH solution =0.5 ml

S.no.	Volume of NaOH Added (ml)	Observed conductance (Ohm ⁻¹)
1.	0.0	
2.	0.5	
3.	1.0	
4.	1.5	
5.	2.0	
6.	2.5	
7.	3.0	

8.	3.5	
9.	4.0	
10.	4.5	
11.		
12.		

CALCULATION:-

Suppose volume of NaOH required for neutralization = V_2 ml The values of observed conductance are plotted along y-axis and the values of volume of NaOH added along x-axis.

By using normality equation,

$$N_1V_1 = N_2V_2$$

(acetic acid) (NaOH)
$$N_1 \times 20 = 0.5 \times V_2$$

$$N_1 = \frac{0.5 \times V_2}{20}$$

N₁ i.e. normality of acetic acid,

\therefore Strength of acetic acid	acid = Normality × eq. wt.		eq. wt.
	=	$N_1 \times 60$	(eq. wt. of acetic acid =
60)			

W g/litre =

PRECAUTIONS:-

- 1. The apparatus used should be rinsed and clean properly.
- 2. After each mixing of the NaOH, the solution should be thoroughly stirred.
- 3. A strong solution of NaOH should be taken so that during titration there is not much change in the volume.
- 4. Before starting the experiment rinse the electrodes of the conductivity cell thoroughly with the given acid.
- 5. The temperature should be kept constant during the experiment.

EXPERIMENT – 3

AIM:- To determine the normality and strength of given dibasic acid (oxalic acid) solution by titrating against standard NaOH solution conductometrically.

THEORY:-

In case of dibasic acid like oxalic acid vs strong base, the shape of the curve is found different. In oxalic acid, the two dissociation exists one after the other as the first dissociation is similar to that of strong acid and second one is similar to that of a weak acid like acetic acid. The titration curve shows two well marked break points.

CHEMICAL REACTION:-

Step-1	COOH (aq) + Na ⁺ + OH ⁻ \rightarrow COONa (aq) + H	₂ O(I)
	Ι	Ι
	СООН	COOH
Step – 2	COONa (aq) + Na ⁺ + OH ⁻ \rightarrow COONa (aq) + H	I₂O (I)
	Ι	Ι
	СООН	COONa

CHEMICAL USED:-

- 1. Oxalic acid solution
- 2. Standard NaOH solution

APPARATUS USED:-

- 1. Beaker
- 2. Pipette
- 3. Buretee
- 4. Conductometer
- 5. Conductivity cell

PROCEDURE:-

- 1. Take 20 ml of oxalic acid in a beaker. Dilute the solution so that conductivity cell dips in the solution.
- 2. Wash the conductivity cell with distilled water and connect it to the conductometer.
- 3. Dip the cell in the oxalic acid and find out the conductance.
- 4. From the burette, mix standard NaOH solution into oxalic acid solution with shaking and note down the observed conductance.
- 5. Repeat the procedure on recording the observed conductance.

OBSERVATION AND CALCULATION:-

Volume of oxalic acid taken = 20 ml Normality of NaOH = $\frac{N}{10}$ Suppose the volume of NaOH required for neutralization = V ml By using normality equation

$$N_1V_1 = N_2V_2$$
(oxalic acid) (NaOH)

$$N_1 \times 20 = .1 \times V$$
Strength (g/litre) = $\frac{V}{200} \times 45 = x g/litre$

$$N_1 = \frac{V}{200}$$
eq. wt. of oxalic acid =

45

PRECAUTIONS:-

- 1. The temperature should be kept constant during the experiment.
- 2. The apparatus used should be clean.
- 3. Rinse the electrodes of the conductivity cell thoroughly with the given acid.

EXPERIMENT-4

AIM:- To determine the solubility and solubility product of a given sparingly soluble salt conductometerically.

THEORY:-

Sparingly soluble salts are those which are very less soluble in solvent. When such salt is put into water, the saturated solution is obtained.

At a particular temperature the maximum amount of substance which forms the saturated solution in a fixed amount of solvent is called its solubility. For PbSO₄,

$$PbSO_{4} \rightleftharpoons Pb^{2+} + SO_{4}^{2-}$$

$$K_{sp} = [Pb^{2+}] [SO_{4}^{2-}]$$

$$K_{sp} = K \times [PbSO_{4}]$$

The saturated solution of PbSO₄ is prepared. The specific conductance is determined by multiplying the observed conductance with cell constant. At infinite dilution the equivalent conductance is determined by Kohlrausch's law.

$$\lambda_0 = \lambda_0 (Pb^{2+}) + \lambda_0 (SO_4^{2-})$$

= 73 + 79.8
= 152.8 at 298 K

By using the following relation, the solubility 'S' of the sparingly soluble salt are obtained

$$S = \frac{1000 \times k}{\lambda_0} g \ equival/litre$$
$$= \frac{1000 \times k \times equivalent \ weight}{\lambda_0} g/litre$$
$$K_{sp} = [Pb^{++}] [SO_4^{--}]$$
$$K_{sp} = S \times S$$
$$K_{sp} = S^2 \ \text{in case of } PbSO_4$$
$$S = \sqrt{K_{sp}}$$

CHEMICAL USED:-

- 1. KCl
- 2. $PbSO_4$
- 3. Conductivity water

APPARATUS USED:-

- 1. Conductometer
- 2. Conductivity bridge
- 3. Conductivity cell
- 4. Pipette
- 5. Burette
- 6. Beaker
- 7. Connecting wires

PROCEDURE:-

It occurs in two steps:-

Step-1:- Determination of cell constant of cell

Step-2:- Determination of solubility and solubility product of the given sparingly soluble salt

Step-1:- Determination of cell constant of cell

- I. Prepare $\frac{N}{10}$ KCl solution by dissolving 7.450g KCl in distilled water or conductivity water to prepare 100 ml solution.
- II. In a beaker transfer 50 ml of this solution and dip the conductivity cell.
- III. Connect the electrodes of cell to conductometer marked "cell".
- IV. The observed conductance should be recorded.
- V. Repeat the procedure by taking KCl solution with normality $\frac{N}{50}$, $\frac{N}{100}$ etc.
- VI. From ratio of specific conductance to observed conductance find out the cell constant.

Step-2:- Determination of solubility:-

In 100 ml distilled water boil 2 gm $PbSO_4$ for 5-10 minutes. To determine the conductance cool, filter and use the filterate by dipping conductivity cell. Repeat the experiment by taking fresh sample of saturated solution of $PbSO_4$.

OBSERVATION AND CALCULATION:-

I. Determination of cell constant

Room temperature =.....t°C

Sr.	Concentration	Observed	Cell	Mean
No.	(KCI)	Conductance	Constant	

1.	N	ohm-1	
2.	$\overline{\frac{10}{N}}$		
3.	$ \frac{N}{50} $ $ \frac{N}{100} $	ohm-1	
		ohm-1	

Mean value =ohm⁻¹
Cell constant =
$$\frac{Specific \ conductance}{observed \ conductance}$$
 (cm⁻¹)

II. Determination of solubility and solubility product

Cell constant =cm⁻¹

S.No.	Observed conductance	Specific conductance k = cell constant × observed conductance
1.	ohm⁻¹	
2.		
3.	ohm ⁻¹	Constant value of K =
	ohm⁻¹	

By using the relation

$$S = \frac{1000 \times k}{\lambda_0} g \ equivalent/litre$$

$$\frac{1000 \times k \times equivalent \ weight}{\lambda_0} g/litre$$
ontweight of PhSO = $\frac{Molecular \ weight}{\lambda_0} = \frac{207+32+64}{303} = 151$

Equivalent weight of PbSO₄ = $\frac{Molecular \ weight}{2} = \frac{207+32+64}{2} = \frac{303}{2} = 151.5$

$$\Lambda_0$$
 (PbSO₄) = $\Lambda_0_{(Pb^{2+})} + \Lambda_0_{(so_4^{2-})}$
= 73+ 79.8

= 152.8 ohms at 298K

By putting the values of specific conductance, equivalent wt., equivalent conductance, we can find out the value of S (solubility of sparingly soluble salt)

$$K_{sp} = [Pb^{++}] [SO_4^{--}] i.e. S \times S^2$$

 $K_{sp} = S^2 in case of PbSO_4.$

PRECAUTIONS:-

- I. To save the device from the damage due to voltage fluctuations, a voltage stabilizer should be used.
- II. Wash the electrodes with the solution which is to be taken in the cell.
- III. All solution should be prepared in conductivity water.
- IV. Platinized electrodes should be used to improve the sharpness of sound.
- V. No change in distance or shapes of electrodes should be made, once the cell constant is determined.
- VI. Conductivity measurements are influenced by change of temperature, so these measurement should be made at controlled temperature.

EXPERIMENT – 5

AIM:- To determine the molecular weight of a non-volatile solute by Rast method.

THEORY:-

The rast method is based upon the measurement of depression of freezing point. The molten camphor is used as a solvent. Camphor has a very

high molal depression constant, about 39.7° . Even a very dilute solution of the solute in camphor has the freezing point many degrees below that of pure camphor and for the measurement of the depression of freezing point an ordinary (0.1°) thermometer is adequate.

This method is used only to those substances which are soluble in camphor and do not react with it chemically, do not the compose below the melting point of camphor.

A known weight of compound is mixed with a known weight of the camphor till a clear homogeneous solution, cooled and then melting point of solid is determined.

By using the formula, the molecular weight M is calculated:-

$$M = \frac{K_f \times 1000 \times W}{\Delta T \times w}$$

Where

W = weight of the compound,

w = weight of camphor

 ΔT = depression in M.Pt

 K_f = molal depression constant

CHEMICAL USED:-

- 1. Liquid paraffin bath
- 2. Non-volatile solute like naphthalene
- 3. Resublimed camphor

APPARATUS USED:-

- 1. 0.1°C thermometer
- 2. Capillary tubes
- 3. Beaker
- 4. Thiele's tube
- 5. Spatula
- 6. Weight box
- 7. Iron stand

PROCEDURE:-

I. Preparation of homogeneous mixture

- a. Take an ignition tube, dry it and weight it accurately.
- b. Mix 0.5 g of powdered camphor into it.
- c. Loosely cork the ignition tube and heat it carefully on a low flame until a clear solution is obtained.
- d. To ensure complete addition and then allow it to cool to get a solid mixture.

II. Determination of m.pt. of the solid mixture

- a. With the help of fine edged spatula, remove the solid mixture from the ignition tube. Powder it and fill it in the capaillary tube.
- b. In Thiele's tube determine the m.pt. of this solid mixture.
- c. Repeat this procedure with two samples for m.pt. determination.

III. Determination of m.pt. of pure camphor

- a. With the help of ether moisten some camphor and powder it carefully in a mortar.
- b. By capillary tube method determine its m.pt.
- c. Repeat the m.pt. determination with two samples.

OBSERVATION:-

Weight of the ignition tube = $W_1 g$

Organic compound + weight of ignition tube = $W_2 g$

Camphor + 0.c + weight of ignition tube = $W_3 g$

Weight of organic compound = W_2 - W_1 = 0.05 g (W)

Weight of camphor = W_3 - W_2 = 0.5 g (w)

M.Pt. of solid mixture			M.Pt. of camphor		
Experiment	Temperature	Mean	Experiment	Temperature	Mean
No.			No.		
1.			1.		
2.			2.		
3.		$t_1^{\circ}C$ T ₁ =t ₁ +	3.		t ₂ °C
		$T_1 = t_1 +$			T ₂ = t ₂ +273
		273			t ₂ +273

CALCULATION:-

Molal depression of camphor (k_f) = 39.7° Depression in m.pt., $\Delta T = (T_2 - T_1)$ Using the formula, M = $\frac{k_f \times 1000 \times W}{\Delta T \times w}$

Using the above relation M, molecular weight of given organic compound.

PRECAUTIONS:-

- 1. The apparatus used should be clean.
- 2. The camphor will vapourise during heating if the ignition tube is not corked properly.
- 3. By giving rotation to the ignition tube following alternate melting and cooling, a homogenous mixer of the compound and camphor can be obtained.
- 4. When the last crystal of the solid disappears, the temperature should be noted.

EXPERIMENT-6

AIM:- To standardize the given acid solution (like HCl) pH metrically.

THEORY:-

In pH metric titrations, when some alkali is added to an acid there will be an decrease in concentration of H^+ ion and increase in pH of the solution.

pH is the negative logarithm of hydrogen ion or hydronium ion concentration.

$$pH = -log[H_3O^+)$$

In the beginning, the pH increases slowly but at the end point, the increase is very large due to rapid increase in the fraction of the H⁺ ion removed by the addition of constant volume of the alkali. After the end point, pH increases slowly. A plot of pH vs volume of alkali added will give the equivalence point.

CHEMICAL USED:-

- 1. Standard alkali or $\frac{N}{10}$ NaOH
- 2. HCl solution
- 3. A buffer solution of known pH (.05 M potassium hydrogen phthalate, pH = 4)
- 4. Distilled water

APPARATUS USED:-

- 1. pH meter
- 2. Glass and calomel electrodes
- 3. Burette
- 4. Beaker

- 1. Wash the electrodes with distilled water.
- 2. Take 20 ml of given acid solution in a beaker and dip the electrodes in it.
- 3. Measure the pH of the solution using previously calibrated pH meter with a glass electrode.
- 4. Mix 0.5 ml of NaOH solution from a burette each time and measure the pH after stirring the solution.

- 5. Mix NaOH solution dropwise near the end point, and measure the pH after each mixing.
- **6.** Repeat the experiment to take some more readings beyond the equivalent point.

OBSERVATION:-

Volume of given HCl taken in beaker = 20 ml Normality of NaOH solution = $\frac{N}{20}$

Volume of NaOH used for complete neutralization or to get end point = V ml

CALCULATION:-

By ploting the pH vs volume of alkali added, find the equivalence point Using normality equation,

$$N_1V_1 = N_2V_2$$
(HCl) (NaOH)
$$N_1 \times 20 = \frac{N}{20} \times V$$

 \therefore N₁ is Normality of HCl solution = $\frac{V}{400}$

Strength of HCl solution = Normality \times Eq. wt.

$$=\frac{N}{400}$$
 × 36.5 = x g/litre

RESULT:-

Strength of given HCl solution = x g/litre PRECAUTIONS:-

- 1. When electrodes not in use, should be placed in distilled water.
- 2. With buffer solution of known pH. pH meter should be calibrated.
- 3. After each a mixing solution should be stirred.
- 4. Near the end point, NaOH solution should be mixed dropwise.

EXPERIMENT – 7

AIM:- To determine the strength of given mono basic acid (like HCl) potentiometrically.

THEORY:-

Poteniometric method is applicable to wide range of titration, provided in indicator electrode is available an indicator electrode is the whose potential indicance the change in the concentration of ion to be titrated. The variation of potential of an electrode with the concentration of ion with which it is in equilibrium is used as an indicator in volumemetric analysis. It is not possible to determine the electrode potential separately, hence the indicator electrode is used in conjunction with a reference electrode, in which potential at one of the reference electrode remains constant during the course of titration e.g. saturated calomel electrode (SCE) while potential of other electrode depends on the activity of H^+ ion in the solution.

A solution of acid is titrated with a solution of an alkali, the following cell is setup in the acid solution.

Ag, AgCl/1MHCl || KCl aq.|| calomel electrode

The change of pH will be reflected in the change of cell potential. When a small volume of standard $\left(\frac{N}{10}\right)$ NaOH is mixed to HCl, a little change in e.m.f. is produced in the beginning. After the end point, the fraction of the hydrogen ion removed by a constant volume of the standard alkali increases rapidly.

Plot the e.m.f. against volume of the alkali added.

By plotting graph between $\frac{\Delta E}{\Delta V}$ against the volume of alkali mixed, the sharp end point is obtained.

CHEMICAL USED:-

- 1. Approx 0.1 N HCl solution
- 2. 0.1 N NaOH solution
- 3. KCl salt bridge
- 4. Pure H_2

APPARATUS USED:-

- 1. Potentiometer
- 2. Glass electrode
- 3. Calomel electrode
- 4. Beaker
- 5. Stirrer

6. Burette

PROCEDURE:-

- I. Set all the apparatus properly.
- II. Take 20 ml of acid solution in a beaker and calomel electrode is dipped into the solution to saturate the solution mix a quinhydrone.
- III. Connect two electrodes to a potentiometer.
- IV. Immediately above the beaker clamp a burette with $\frac{N}{10}$ NaOH solution.
- V. Measure the e.m.f. of the cell.
- VI. Mix 0.5 ml of NaOH solution from the burette and determine the e.m.f. of the cell after waiting for one minute.
- VII. Mix another 0.5 ml of NaOH and measure e.m.f. of the solution.
- VIII. Repeat the experiment similarly, after each addition 0.5 ml of NaOH.
 - IX. When a sudden jump in the e.m.f. is observed, stop mixing NaOH and find the approximate volume needed for reaching the end point.
 - X. By mixing 1 or 2 ml of alkali in initial steps, repeat the titration. By adding 1 or 2 drops of alkali at a time expected to involve the end point.
 - XI. Note down the e.m.f. after each addition.

Sr.No.	Volume of	EMF	ΔΕ	ΔV	$\frac{\Delta E}{\Delta W}$	V
	NaOH(ml)	(Volts)	(Volts)	(ml)	ΔV	(ml)
1.	V ₁	E_1				
2.	V2	E_2				
3.	V ₃	E_3				
4.	V 4	E_4				
5.	V 5	E_5				
6.	_	_				
7.	_	_				
8.	_	_				

OBSERVATION:-

CALCULATION:-

Draw a graph between EMF along y-axis and volume of NaOH along x-axis. The inflexion point correspondes to the equivalence point. Then find the value of V corresponding to inflexion point.

If a clear equivalence point is not obtained then draw a graph between $\frac{\Delta E}{\Delta V}$ against volume of NaOH

By using normality equation, the normality of strength of HCl can be determined

 $N_1V_1 = N_2N_2$ $N_1=?$ (acid) (Alkali)

Strength = $(N_1 \times 36.5)$ g/litre

Section – C (Organic)

EXPERIMENT-1

AIM:- To separate green leaf pigments by thin layer chromatography and determine their R_f values.

THEORY:-

In thin layer chromatography where the stationary phase is a polar adsorbent and the mobile phase can be a single solvent or combination of solvent. A thin layer of adsorbent usually silica gel or activated alumina on a smooth surface is used as a stationary phase and chromatogram is developed by upward capillary movement of the solvent through the thin layer of adsorbent.

In principle, the components will differ insolubility and in the strength of their adsorption to the adsorbent and some components will be carried farther up plate then others. When the solvent has reached the top of the plate, the plate is removed from the developing chamber, dried and separated components are visualized. If the compounds are coloured, visualization is straight forward. Various compound on the developed TLC plates are identify through their R_f values. R_f stands for Retention factor or Ratio of Fronts.

 $R_f = \frac{\text{Distance travelled by the compound}}{\text{Distance travelled by solvent}}$

CHEMICAL USED:-

- 1. Chloroform
- 2. Acetone
- 3. Benzene
- 4. Silica gel
- 5. Spinach leaves

APPARATUS USED:-

- 1. Glass plates
- 2. Wide mouthed bottles with stoppers
- 3. Glass jars with lids
- 4. Tongs
- 5. Capillary tubes
- 6. Beaker

7. Filter paper

- Slurry of adsorbent is prepared by mixing about 30 g of silica gel in small amount to 100 ml of chloroform in a wide mouth bottle with constant swirling motion, the bottles should be tightly stopperd.
 Similarly, we can also prepare a slurry of alumina in alcohol.
- II. By holding the two cleaned and dried glass plate together with tong, dipping them in the slurry of adsorbent and removing the plates quickly in this way, obtain a uniform coating of the slurry on one side of each plate. Do not dip the top and end of the plate now allow the slurry to drain and holding the top edges, separate the two plate and allow it to dry in air by placing these plate on a filter paper with slurry side upwards. These plates are known as chromatographic plates.
- III. Prepare the 'extract of leaves' by dipping few crushed leaves of spinach in a little quantity of alcohol for 30 minutes in a beaker stirring with a glass rod the contents are filtered and the filtrate is taken as the 'extract of leaves'.
- IV. In the center of the chromatographic plate a drop of he green leaves extract is applied with the help of a capillary tube. Allow the drop dry in air.
- V. In chromatography jar place the glass plate in such a way that it does not touch the side of the jar.
- VI. Into the chromatography jar lower the glass plate containing the developing solvent (alcohol and water in the ratio 1:1) care should be taken that the spot does not dip into the solvent and the glass strip hangs vertically straight. With the help of a lead cover the jar.
- VII. Remove the slide from the jar, when the developing solvent rises on a certain suitable distance and dry it in air.
- VIII. Mark the level of the liquid with a pencil.
 - IX. Mark the central points of each support.
 - X. The distance travelled by the spots and the developing agent to be measured.
 - XI. Calculate the R_f values of the spots corresponding to different components.

By using the relation

 $R_f = \frac{\text{Distance travelled by the component}}{\text{Distance travelled by the solvent}}$

CALCULATION:-

Distance travelled by component $1 = d_1 m$

Distance travelled by component 2 = $d_2 m$

Distance travelled by component $3 = d_3 m$

Distance travelled by developing liquid $= d_4 \text{ cm}$

$$R_{f} \text{ value of component 1} = \frac{d_{1}}{d_{4}}$$
$$R_{f} \text{ value of component 2} = \frac{d_{2}}{d_{4}}$$

 R_f value of component $3 = \frac{d_3}{d_4}$

PRECAUTIONS:-

- I. The glass plate used must be thoroughly clean and dry.
- II. Fine capillary tube should be used for applying a spot of solution.
- III. The glass plate should be kept erect.
- IV. During the experiment, keep the glass jar always covered and undisturbed.
- V. The slurry bottle must be tightly Stoppard.
- VI. The spots of the solution must not dip in the developing solvent.

AIM:- To separate a mixture of coloured organic compounds (fluorescein and methylene blue) by column chromatography.

THEORY:-

In column chromatography, the stationary phase, a solid adsorbent, is placed a vertical glass, according to the amount of material which needs to be loaded on to the column, the columns may vary in sizes of their diameter and lengths. A plug of cotton wool is inserted in the neck of the tube.

Adsorbents used commonly for column chromatography are silica gel and alumina. The mobile phase, a liquid solvent is added to the top and flows down through the column by either gravity or external pressure.

As the solution passes through the column different components gets adsorbed to different extents at different level producing bands is selected a solvent or eluent is added, as soon as the last portion of the solution and enters the column. It acts as a moving phase. The selected solvent dissolve out the different components from the different zones selectively and thus work out the different band in the form of fraction which are collected separately. To get the components in pure form, the eluent from each fraction is then distilled off.

CHEMICAL USED:-

- 1. Alumina 100-200 mesh
- 2. Methylene blue
- 3. Sodium salt of fluorescein
- 4. Rectified spirit

APPARATUS USED:-

- 1. Chromatography column
- 2. Test tube
- 3. Beaker

- 1. Using rectified spirit prepare a slurry of 50-100 mg of activated alumina and pour this slurry into the column. On the top of the adsorbent leave a space of 4-5 cm for addition of solvent.
- 2. Mix solvent to the top of the adservent. The solvent flows slowly down the column. At the top level monitor the solvent, it does not go below the top of the adsorbent.
- 3. As the solvent close through the alumina and its level reaches the bottom of the column, the processes of pre-elution is complete and the column is ready to load.
- 4. In about 5 ml of rectified spirit dissolve 5 mg of methylene blue and sodium salt of fluorescein, the sample is ready to be loaded in the column. Only a few drops of solvent use to load the sample into the column.
- 5. Add rectified spirit, when the sample is introduced in the column to develop the chromatogram. After some time, blue colour of methylene blue travels down the column while fluoresecin remains at the top.
- 6. Continue the process till whole of methylene blue has passed into the receiver placed below the column and the same becomes colourless.
- 7. Rectified spirit is placed by water has eluent solvent when fluorescein starts moving down the column. change the collection beaker and continue elution till whole of fluorescein is recovered.

PRECAUTIONS:-

- 1. To prevent the drying out of the column, the upper surface of the column always remains covered with the solvent throughout the experiment.
- 2. Eluents must be low boiling liquids show as to facilitate the quick removal from the fractions collected.

AIM:- To seprate a mixture of O- and p- nitrophenols by steam distillation.

THEORY:-

The process is use for purification of those substances from no-volatile impurities which themselves are steam volatile but insoluble in water at the same time.

For such a system, where to immiscible liquids are brough to gather which do not mix at all, each liquid behaves independent of the other and exerts a vapour pressure.

O-nitrophenol is steam volatile as it shows intra molecular hydrogen bonding and has a boiling point lower than p-nitrophenol which shows inter molecular hydrogen bonding. So they can be separated by steam distillation.

O-nitrophenol \rightarrow

p-nitrophenol

(intramolecular H-Bonding)

(intermolecular H-bonding)

CHEMICAL USED:-

- 1. Ortho and para nitrophenol
- 2. 2% HCl solution
- 3. Powdered charcoal

APPARATUS USED:-

- 1. Round bottom flask
- 2. Sand bath
- 3. Filter paper
- 4. Buchner funnel
- 5. Condenser tube
- 6. Burner
- 7. Steam generator

- 1. Take the mixture of o-and p-nitrophenol in the round bottom flask.
- 2. While passing steam through it simultaneously, heat it on a sand bath, when ortho-nitrophenol passes over and para-isomer is left behind.
- 3. In ice cold water cool the distillate.
- 4. Filter at the pump and allow to drain.

- 5. Between folds of filter paper dry the compound and determine the melting point.
- 6. The removal of ortho-nitrophenol by steam distillation, cool the residue in the flask in ice for few minutes and filter.
- 7. For about five minute boil the crude para-nitropheno, with 2% solution of HCl with a little powdered charcoal.
- 8. Through a Buchner funnel filter the solution and allow to cool gradually when colourless needle like crystal of para-nitrophenol separate out.
- 9. Dry them by pressing between folds of filter paper and not its melting point.
- 10.When ortho-nitrophenol solidifies in the condenser tube, stop passing cold water through the condenser.

PRECAUTION:-

- 1. All the apparatus used in experiment should be clean and dry.
- 2. Set all the apparatus properly.
- 3. Follow all the steps carefully.
- 4. To avoid the condensation of water, the round bottom flask is being simultaneously heated on a sand bath.

AIM:- To prepare O-chlororobenzoic acid from anthranilic acid.

THEORY:-

First anthranilic acid is diazotized to give desired product of diazonium salt. In a diazonium salt, diazo group is replaced by halogen atom by treating the diazonium salt with cuprous halide in presence of HCl.

CHEMICAL REACTION:-

Anthranilic acid $\xrightarrow{NaNO_2/HCl}$ diazonium salt $\xrightarrow{Cu_2Cl/HCl}$ o-Chlorobenzoic acid

CHEMICAL USED:-

- 1. Anthranilic acid = 6.0 g
- 2. Sodium nitrite = 3.0 g
- 3. Copper sulphate = 10 g
- 4. Sodium chloride = 10 g
- 5. Conc. HCl = 40 ml
- 6. Copper turnings = 6.0 g
- 7. Ice = as needed

APPARATUS USED:-

- 1. Round bottom flask
- 2. Ice bath
- 3. Beaker
- 4. Burner
- 5. Iron stand
- 6. Droper
- 7. Glass rod
- 8. Filter paper etc.

PROCEDURE:-

1. Prepare a solution of cuprous chloride as follows :-

Dissolve 10 g of copper sulphate and 10 g of NaCl (sodium chloride) in 30ml of distilled water taken in a round bottom glass. Boil the solution and add 30ml conc. HCl and 6g copper turnings. Hit the contants till a clear solution is obtained. Filter and full the filterate in an ice bath.

- Take 6 g anthranilic acid and 10ml conc. HCl in a beaker. Add about 40ml distilled water and hit the contents to get a clear solution. Then, cool the solution to 0-5°C in an ice bath.
- 3. To the anthranilic acid solution, add a solution of 3g of sodium nitrite prepared in 10ml of distilled water dropwise. Taking care the temperature should remains below 5°C.
- 4. Add the above diazonium salt solution in small instalments to the cold cuprous chloride solution prepared in the first step with constant stirring.
- 5. Allow the reaction mixture to stand for about half an hour at room temperature.
- 6. Filter the crude product and crystallize from boiling water containing a little amount alcohol.

OBSERVATION:-

- I. Colour = white crystalline solid.
- II. Yield = 5g
- III. M.Pt. = 138°C

PRECAUTIONS:-

- 1. The colour of cuprous chloride solution should be colourless.
- 2. During diazotization of anthranilic acid, the temperature should be kept below 5°C.
- 3. To avoid the decomposition on standing, the diazonium salt solution should be added immediately to the cuprous chloride solution.

EXPERIMENT – 5

AIM:- To prepare p-Bromonaniline from p-Bromoacetanilide. THEORY:- p-Bromonaniline can be obtained by the hydrolysis of acetanilide with an alkali.

CHEMICAL REACTION:-

p-Bromoacetanilide + $H_2O \xrightarrow{KOH}$ p-Bromoaniline + CH_3COOH

CHEMICAL USED:-

- 1. P-Bromoacetanilide = 7.5 g
- 2. Ethyl alcohol = 25-30 ml
- 3. Potassium hydroxide = 4.5 g
- 4. Ice = As needed

APPARATUS USED:-

- 1. Round bottom flask
- 2. A reflux water condenser
- 3. Beaker
- 4. Water bath
- 5. Glass rod
- 6. Iron stand
- 7. Burner

PROCEDURE:-

- 1. Take 7.5g of p-bromoacetanilide & 15 ml ethyl alcohol in a 100 ml round bottom flask fitted with a reflux water condenser. Heat the contents to get clear solution.
- 2. Mix a solution of 4.5g KOH dissolved in 7.8 ml distilled water to this solution, boil the contents of the flask for about 30 minutes.
- Transfer the contents of round bottom flask to a 250 ml beaker and add 50ml of water. By heating on a water bath concentrate the solution to two – thirds of its volume.
- 4. In a beaker a containing 60-70 ml ice cold water, cool and pour the contents with constant stirring, when an oily product separates out which soon solidifies.
- 5. Filter and crystallize the crude product from 50% ethyl alcohol to get white crystalline solid.

RESULT:-

- I. Yield = about 5g
- II. Colour = white crystalline solid
- III. M.Pt. = $66^{\circ}C$

PRECAUTIONS:-

p-Bromoaniline separates as an oily liquid which soon solidifies. In case does not solidify, scratch the sides of the beaker with a glass rod and add more ice.

AIM:- To prepare m-nitroaniline from m-dinitro benzene.

THEORY:-

m-nitroaniline can be obtained by reducing m-dinitrobenzene partially either with sodium polysulphide or with alcoholic solution of ammonium hydrogen sulphide.

CHEMICAL REACTION:-

m-dinitrobenzene + Na₂S₂+ H₂O \rightarrow m-Nitroaniline + Na₂S₂O₃

m-dinitrobenzene + $3NH_4SH \rightarrow m$ -Nitroaniline + $3S + 2H_2O + 3NH_3$

CHEMICAL USED:-

- 1. m-Dinitrobenzene = 7.5g
- 2. Sodium sulphide = 12.0g
- 3. Sulphur powder = 4.5g
- 4. Ice = as needed

APPARATUS USED:-

- 1. Separating funnel
- 2. Beaker
- 3. Glass rod
- 4. Burner
- 5. Iron stand

- First prepare polysulphide solution is formed as follows: Dissolve 12g sodium sulphide in 50 ml distilled water. Mix 4.5g of sulphur powder to it and heat the contents gently till a clear solution is obtained.
- II. Now take 7.5g of m-dinitrobenzene and 150 ml of water in 400 ml beaker. Heat to boil stir the solution.
- III. Transfer the sodium poly sulphide solutions prepared in first step to a separating funnel and clamp it over the beaker containing m-dinitro benzene solution.

- IV. Mix sodium poly sulphide solution with constrant stirring to the boiling mixer in small instalments so that mixing is complete in about 10 minutes boil the contains for 20 minutes more.
- V. In the beaker, cool and add crushed ice when crude m-nitroaniline separates out.
- VI. Filter crude product and wash with cold water.
- VII. Now transfer the crude product to a beaker containing in about 50 ml water and 12 ml conc. HCl. Boil for 15 minutes when m-nitroaniline passes into solution as its hydrochloride, leaving behind sulphur. Filter the solution.
- VIII. To the filerate mix conc. Aqueous ammonia when m-nitroaniline separates out.
 - IX. Filter and recrystallise from volume water.

RESULT:-

- I. Yield = about 5g
- II. Colour = Bright yellow needle like crystals
- III. M.Pt. = 114°C

AIM:- To prepare S-Benzyl – iso – thiouronium chloride from thiourea.

THEORY:-

By treating benzyl chloride with thiourea in alcoholic solutions, S-Benzyl – iso – thiouronium chloride can be obtained.

CHEMICAL REACTION:-

Benzyl chloride + Thiourea \rightarrow S-Benzyl – iso – thiouronium chloride

CHEMICAL USED:-

- 1. Benzyl chloride = 4g
- 2. Thiourea = 2.5g
- 3. Reactified spirit = 5ml

PROCEDURE:-

- 1. Take 4g benzyl chloride, 2.5g thiourea and 5ml rectified spirit in 100 ml round bottom flask which is fitted with a reflux condenser.
- 2. Warm the contents on a water bath. An exothermic reaction occurs immediately and whole of thiourea passes into the solution.
- 3. Reflex the resulting solution of round bottom flask for about 30 minutes and cool in ice cold water when white crystal of S-Benzyl is thiouronium chloride separate out.
- 4. Filter under suction and allow the crystals to dry in air.
- 5. Recrystallise the crude product from 0.2 N HCl.

RESULT:-

- I. Yield = 5g (about)
- II. Colour = white crystal
- III. M.Pt. = 175°C