INDIRA GANDHI UNIVERSITY, MEERPUR, REWARI
SCHEME OF STUDIES AND EXAMINATION
B. TECH (Computer Science and Engineering)
SEMESTER 7th & 8th
effective from 2021-22

COURSE CODE AND DEFINITIONS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Lecture</td>
</tr>
<tr>
<td>T</td>
<td>Tutorial</td>
</tr>
<tr>
<td>P</td>
<td>Practical</td>
</tr>
<tr>
<td>BSC</td>
<td>Basic Science Courses</td>
</tr>
<tr>
<td>ESC</td>
<td>Engineering Science Courses</td>
</tr>
<tr>
<td>HSMC</td>
<td>Humanities and Social Sciences including Management courses</td>
</tr>
<tr>
<td>PCC</td>
<td>Professional Core Courses</td>
</tr>
<tr>
<td>LC</td>
<td>Laboratory Courses</td>
</tr>
<tr>
<td>MC</td>
<td>Mandatory Courses</td>
</tr>
<tr>
<td>PT</td>
<td>Practical Training</td>
</tr>
<tr>
<td>S</td>
<td>Seminar</td>
</tr>
<tr>
<td>INTPR</td>
<td>Industrial Training Project</td>
</tr>
</tbody>
</table>

General Notes:

1. Students will be allowed to use non-programmable scientific calculator. However, sharing of calculator will not be permitted in the examination.

2. Students will be permitted to opt for any elective course run by the department. However, the department shall offer those electives for which they have expertise. The choice of the students for any elective shall not be binding for the department to offer, if the department does not have expertise. To run the elective course a minimum of 1/3rd students of the class should opt for it.
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours/week</th>
<th>Contact Hrs./per week</th>
<th>Total Contact Hrs./per week</th>
<th>Credit</th>
<th>Examination Duration of Exam (Marks)</th>
<th>Theoretical</th>
<th>Practical</th>
<th>Total</th>
<th>Duration of Exam/Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professional Core Course</td>
<td>PCC-CSE-401</td>
<td>Neural Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>25 75 100 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Professional Core Course</td>
<td>PCC-CSE-403</td>
<td>Machine Learning</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>25 75 100 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Professional Elective Course</td>
<td>Refer to Annexure IV</td>
<td>Professional Elective–IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>25 75 100 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Open Elective Course</td>
<td>Refer to Annexure OEC-I</td>
<td>Professional Elective–IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>25 75 100 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Professional Core Course</td>
<td>LC-CSE-421</td>
<td>Neural Networks Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>25 - 25 50 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Professional Core Course</td>
<td>LC-CSE-423</td>
<td>Machine Learning with Python Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>25 - 25 50 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Professional Core Course</td>
<td>PT-CSE-425</td>
<td>Practical Training-II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL CREDIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>175 375 50 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
1. Practical Training II: The evaluation of Practical Training-II will be based on seminar, viva-voce, report submitted by the students. According to performance, the students will be awarded grades A, B, C, F. A student who is awarded ‘F’ grade is required to repeat Practical Training.
2. Choose one subject from each Professional Elective–IV, Professional Elective–V and Open Elective–I. List of elective subjects is attached as annexure.
3. An elective paper will be offered to the students when at least 15 students will choose that subject and the expertise of the same is available in the Department/Institute.
Annexure IV: Professional Elective -IV
1. PEC-CSE-403: Software Project Management
2. PEC-CSE-405: Web Mining
3. PEC-CSE-407: Predictive Analysis
4. PEC-CSE-409: Big Data Analytics

Annexure V: Professional Elective -V
1. PEC-CSE-411: Network Security and cryptography
2. PEC-CSE-413: Software Testing
3. PEC-CSE-415: Cyber Security Threats

Annexure OEC-I: Open Elective-I
1. OEC-ECE-451: Electronic Principles
2. HSMC-08: Fundamentals of Management
3. OEC-CE-451: Disaster Management
4. HSMC-10: English for Professionals
B.Tech (COMPUTER SCIENCE & ENGINEERING)
Scheme of Studies/Examination
Semester 8th
w.e.f. 2021-2022

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Total Contact Hrs. per week</th>
<th>Credit</th>
<th>Examination (Marks)</th>
<th>Schedule</th>
<th>Duration of Exam (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professional Core Course</td>
<td>INTPR-CSE-402</td>
<td>Industrial Training/Institutional Project</td>
<td>0 0 6 6 10</td>
<td>200 - 300 500</td>
<td>3 Hrs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CREDIT 10 200 - 300 500

2 Hours per week per batch for one teacher and batch size will be decided by the HOD/Chairperson of the department.

Procedure for Examination and continuous Assessment

(A) **External Exam Marks**
1. Project Evaluation 100 Marks
2. Project Seminar 100 Marks
3. Project Viva 100 marks

(B) **Continuous Assessment Marks**
1. Assessment by Internal Examiner and Viva 150 Marks
 (Before the Committee Constituted by Chairman of the Department)
2. Assessment by Industrial Guide/Chairperson 50 Marks

NOTE: It is Optional. A student can earn at most 6 credits during the duration of the 8th semester subject to the passing of at least two MOOC/NPTEL courses (carrying minimum 2/3 credits). The MOOC/NPTEL chosen by the student should not be on offer/scheme of the degree. These credits will be considered in the Final Mark sheet of the students.
Course Objectives:
1. To understand the different issues involved in the design and implementation of a Neural Networks.
2. To study the basic of neural network and its activation functions.
3. To understand and use of perceptron and its application in real world
4. To develop an understanding of essential NN concepts such as: learning, feed forward and feed backward
5. To design and build a simple NN model to solve a problem

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

UNIT1
Overview of biological neurons: Structure of biological neuron, neurobiological analogy, Biological neuron equivalencies to artificial neuron model, Evolution of neural network.

Activation Functions: Threshold functions, Signum function, Sigmoid function, Tan-hyperbolic function, Stochastic function, Ramp function, Linear function, Identity function.

ANN Architecture: Feed forward network, Feed backward network, single and multilayer network, fully recurrent network,

UNIT2

Perceptron Network: Architecture, training, Testing, single and multi-output model, Perceptron for AND function

Linear function, application of linear model, linear seperatablity, solution of OR function using liner seperatablity model.
UNIT 3

Learning: Supervised, Unsupervised, reinforcement learning, Gradient Decent algorithm, generalized delta learning rule, Habbian learning, Competitive learning, Backpropogation Network: Architecture, training and testing.

UNIT 4

Associative memory: Auto associative and Hetro associative memory and their architecture, training (insertion) and testing (Retrieval) algorithm using Hebb rule and Outer Product rule. Storage capacity, Testing of associative memory for missing and mistaken data, Bidirectional memory

Course Outcomes:
1. For a given conceptual problem student will able to analyze the problem and able to visualize in NN
2. Students will be familiar with different NN models.
3. Students will be able to understand the concept of learning in NN.

Text Books:

Reference Books:
2. “Neural Networks”, Kosko, 1992, PHI.
Objectives of the course

1. To learn the basic concept of machine learning and types of machine learning.
2. To design and analyze various machine learning algorithms and techniques with a modern outlook focusing on recent advances.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Unit-1

Unit-2

Dimensionality Reduction- Dimensionality reduction: Definition, Row vector and Column vector, how to represent a dataset, how to represent a dataset as a Matrix, Data preprocessing in Machine Learning: Feature Normalization, Mean of a data matrix, Column Standardization, Co-variance of a Data Matrix, Principal Component Analysis for Dimensionality reduction.

Unit-3

Supervised Learning- Supervised Learning: Definition, how it works. Types of Supervised learning algorithms k-Nearest Neighbours, Naïve Bayes, Decision Trees, Naive Bayes, Linear Regression, Logistic Regression, Support Vector Machines.

Unit-4

Evaluation: Performance measurement of models in terms of accuracy, confusion matrix, precision & recall, F1-score, receiver Operating Characteristic Curve (ROC) curve and AUC, Median absolute deviation (MAD), Distribution of errors
Suggested books

Suggested reference books
2. Simon O. Haykin, Neural Networks and Learning Machines, Pearson Education, 2016

Course Outcomes
1. Understand fundamental issues and challenges of supervised and unsupervised learning techniques.
2. Extract features that can be used for a particular machine learning approach.
3. To compare and contrast pros and cons of various machine learning techniques and to get an insight of when to apply a particular machine learning approach.
4. To mathematically analyse various machine learning approaches and paradigms.
Objectives of the course
1. To understand the different issues involved in the design and implementation of a Neural Networks.
2. To implement the basic of neural network and its activation functions.
3. To develop an understanding of essential NN concepts such as: learning, feed forward and feed backward
4. To design and implement a simple NN model to solve a problem

Practical problems:
1. Introduction to Matlab in context with NN.
2. Plotting of Activation Functions: Threshold functions, Signum function, Sigmoid function, Tan-hyperbolic function, Ramp function, Identity function using matlab
3. Implementation of some basic model like MCP with suitable example.
4. Implementation of Hebb model with suitable example.
5. How the weights and bias values affect the output of a neuron.
6. How the choice of activation function (or transfer function) affects the output of a neuron. Experiment with
8. To study some basic neuron models and learning algorithms by using Matlab’s neural network toolbox.

Outcomes of the course
1. For a given conceptual problem student will be able to analyze the problem and able to visualize using NN
2. Students will be familiar with different NN models and its implementation.
3. Students will be able to understand the concept of learning in NN and its implementation.
<table>
<thead>
<tr>
<th>Coursecode</th>
<th>LC-CSE-423</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>MACHINE LEARNING WITH PYTHON</td>
</tr>
<tr>
<td>Course title</td>
<td>MACHINE LEARNING WITH PYTHON LAB</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester</td>
<td></td>
</tr>
<tr>
<td>Class work</td>
<td>25 Marks</td>
</tr>
<tr>
<td>Exam</td>
<td>25 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>50 Marks</td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>03 Hours</td>
</tr>
</tbody>
</table>

A student has to attempt 12-15 practicals based on theory on an open-source tool.
PRACTICAL TRAINING-II

The evaluation of Practical Training-II will be based on seminar, viva-voce, report submitted by the students. According to performance, the students are awarded grades A, B, C, F. A student who is awarded ‘F’ grade is required to repeat Practical Training.

<table>
<thead>
<tr>
<th>Coursecode</th>
<th>PT-CSE-425</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Professional Core Course</td>
</tr>
<tr>
<td>Coursetitle</td>
<td>Practical Training-II</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td>Class work</td>
<td>0</td>
</tr>
<tr>
<td>Exam</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Duration of Exam</td>
<td></td>
</tr>
</tbody>
</table>

Practical Training II: The evaluation of Practical Training-II will be based on seminar, viva-voce, report submitted by the students. According to performance, the students are awarded grades A, B, C, F. A student who is awarded ‘F’ grade is required to repeat Practical Training.
SOFTWARE PROJECT MANAGEMENT

<table>
<thead>
<tr>
<th>Coursecode</th>
<th>PEC-CSE-403</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Professional Elective Course</td>
</tr>
<tr>
<td>Coursetitle</td>
<td>Software Project Management</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester 7</td>
<td></td>
</tr>
<tr>
<td>Class work</td>
<td>25 Marks</td>
</tr>
<tr>
<td>Exam</td>
<td>75 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>100 Marks</td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>03 Hours</td>
</tr>
</tbody>
</table>

Course Objectives:

By the end of this course the students will be able to:

1. Identify different stages of Project Management and able to manage scope & objectives defined by project stakeholders at the same time as focussing on project success.
2. Analyse cost benefit evaluation, different risk associated with project, and techniques used to evaluate & mitigate risk.
3. Manage the resources, monitoring the progress of project using different techniques and managing contracts & peoples associated with the project.
4. Understand the importance of software quality and techniques to enhance software quality.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

UNIT 1

Introduction to Software Project Management (SPM): Definition of a Software Project (SP), SP Vs. other types of projects activities covered by SPM, categorizing SPs, project as a system, management control, requirement specification, information and control in organization.

Stepwise Project planning: Introduction, selecting a project, identifying project scope and objectives, identifying project infrastructure, analyzing project characteristics, identifying project products and activities, estimate efforts each activity, identifying activity risk, allocate resources, review/publicize plan.

UNIT 2

Project Evaluation & Estimation: Cost benefit analysis, cash flow forecasting, cost benefit evaluation techniques, risk evaluation. Selection of an appropriate project report; Choosing technologies, choice of process model, structured methods, rapid application development,
Activity planning & Risk Management: Objectives of activity planning, project schedule, projects and activities, sequencing and scheduling activities, network planning model, representation of lagged activities, adding the time dimension, backward and forward pass, identifying critical path, activity throat, shortening project, precedence networks.

Risk Management: Introduction, the nature of risk, managing risk, risk identification, risk analysis, reducing the risks, evaluating risks to the schedule, calculating the z values.

UNIT 3

Resource allocation & monitoring the control: Introduction, the nature of resources, identifying resource requirements, scheduling resources creating critical paths, counting the cost, being specific, publishing the resource schedule, cost schedules, the scheduling sequence.

Monitoring the control: Introduction, creating the frame work, collecting the data, visualizing progress, cost monitoring, earned value, prioritizing monitoring, getting the project back to target, change control.

Managing contracts and people: Introduction, types of contracts, stages in contract, placement, typical terms of a contract, contract management, acceptance, Managing people and organizing terms: Introduction, understanding behaviour, organizational behaviour: a back ground, selecting the right person for the job, instruction in the best methods, motivation, working in groups, becoming a team, decision making, leadership, organizational structures.

UNIT 4

Software quality: Introduction, the place of software quality in project planning, the importance of software quality, defining software quality, ISO 9126, Practical software quality measures, product versus process quality management, external standards, techniques to help enhance software quality.

Text Book:
1. Software Project Management (2nd Edition), by Bob Hughes and Mike Cotterell, 1999, TMH

Reference Books:
1. Software Engineering – A Practitioner’s approach, Roger S. Pressman (5th edi), 2001, MGH
3. Project Management 2/c. Maylor
Course Objectives:
1. To understand the architecture of web, mining the data, issues, challenges.
2. To study the methods of extracting knowledge from web data, text and unusual data.
3. To understand and use data mining language like R, Python etc.
4. To understand the optimization of web and its applications.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Unit: 1
Data Mining Foundations: Basic concepts in data Mining, Web mining versus Data mining, Discovering knowledge from Hypertext data; An overview of web mining: What is Web mining, Web mining taxonomy, Web mining subtasks, issues, challenges

Unit: 2

Unit: 3
Optimization: Introduction to Models and Concept of Computational Intelligence, Social Behavior as Optimization: Discrete and Continuous Optimization Problems, Classification of Optimization Algorithms, Evolutionary Computation Theory and Paradigm, Swarm and Collective intelligence

Unit: 4
Swarm Intelligence Techniques: Particle Swarm Optimization, Ant Colony Optimization, Artificial Bees and Firefly Algorithm etc., Hybridization and Comparisons of Swarm Techniques, Application of Swarm Techniques in Different Domains and Real World Problems
Course Outcomes:

1. Learn how the Web mining helps to improve the power of web search engine by classifying the web documents and identifying the web pages.
2. How to predict user behavior in the web.
3. For a given data set how the optimization will be performed.

Suggested books:

1. Witton Frank, Data Mining, Morgan Kaufmann Publishers.
2. Kennedy, J. and Eberhart, R.C., Swarm Intelligence, Morgan Kaufmann Publishers, 2001
5. Parsopoulos, K.E., Vrahatis, M.N., Particle Swarm Optimization and Intelligence: Advances and Applications, Information Science Reference, IGI Global, 2010
6. Clerc, M., Particle Swarm Optimization, ISTE, 2006
PREDICTIVE ANALYTICS

<table>
<thead>
<tr>
<th>Course code</th>
<th>PEC-CSE-407</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Professional Elective Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Predictive Analytics</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Semester 7</td>
</tr>
<tr>
<td>Class work</td>
<td>25 Marks</td>
</tr>
<tr>
<td>Exam</td>
<td>75 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>100 Marks</td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>03 Hours</td>
</tr>
</tbody>
</table>

Course Objectives:
1. To provide the knowledge of various quantitative and classification predictive models based on various regression and decision tree methods.
2. To provide the knowledge to select the appropriate method for predictive analysis.
3. To provide the understanding of how to search, identify, gather and pre-process data for the analysis.
4. To provide the understanding of how to formulate predictive analytics questions.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Unit 1
Introduction: The Analytics Life Cycle, Introduction to Predictive Analytics, Matrix Notation, Basic Foundations, Model, Method and Feature Selection

Regression: Covariance, Correlation and ANOVA review; Simple Linear Regression, OLS Model Diagnostics, Dummy Variables, Multivariate Regression, OLS Assumptions, Weighted Least Squares (WLS), Generalized Linear Models (GLM).

Unit 2
Classification Models: Introduction, Binomial Logistic Regression, Multinomial Logistic Regression, Linear Discriminant Analysis, Quadratic Discriminant Analysis.

Decision Trees: Introduction Regression Trees, Regression Tree Issues, Classification Trees, Pruning Trees, Bootstrap Aggregation (Bagging), Random Forest Models.

Unit 3
Data Pre-Processing: Overview, Variable Types, Introduction to Data Transformations, Data Transformations: Categorical to Dummy Variables, Polynomials, Box-Cox Transformation,
Unit-4

Dimensionality: Regularization (Penalized or Shrinkage Models, Ridge Regression, LASSO, Dimension Reduction Models, Principal Components Regression (PCR), Partial Least Squares (PLS)).

Course Outcomes:
1. Ability to develop and use various quantitative and classification predictive models based on various regression and decision tree methods.
2. Ability to select the appropriate method for predictive analysis.
3. Ability to search, identify, gather and pre-process data for the analysis.
4. Ability to formulate predictive analytics questions.

Suggested books:

Suggested reference books
2. Predictive & Advanced Analytics (IBM ICE Publication)
Objectives of the course

1. To provide an explanation of the architectural components and programming models used for scalable big data analysis.
2. To identify the frequent data operations required for various types of data and apply techniques to handle streaming data.
3. To describe the connections between data management operations and the big data processing patterns needed to utilize them in large-scale analytical applications.
4. To identify, describe, and differentiate between relational and non-relational databases and how Data Warehouses, Data Marts, Data Lakes, and Data Pipelines work.
5. To explain how the Extract, Transform, and Load process works to make raw data ready for analysis.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Unit: 1

Unit: 2
Data Repositories and Big Data Platforms: RDBMS, NoSQL, Data Marts, Data Lakes, ETL, and Data Pipelines, Foundations of Big Data, Big Data Processing Tools, Modern Data Ecosystem, Key Players, Types of Data, Understanding Different Types of File Formats, Sources of Data Using Service Bindings

Unit: 3
Introduction to Big Data Modeling and Management: Data Storage, Data Quality, Data Operations, Data Ingestion, Scalability and Security Traditional DBMS and Big Data Management Systems, Real Life Applications, Data Model: Structure, Operations, Constraints, Types of Big Data Model

Unit: 4

Suggested books:

Suggested reference books

Course Outcomes

1. For a given query Describe the Big Data landscape including examples of real world big data problems including the three key sources of Big Data: people, organizations, and sensor.
2. For a given specification, Recognize different data elements in your own work and in everyday life problems
3. For a given specification select a data model to suit the characteristics of your data
4. For a given problem one will be able to Retrieve data from example database and big data management systems and identify when a big data problem needs data integration
5. For a given problem one will be able to design an approach to leverage data using the steps in the machine learning process and apply them to explore and prepare data for modelling.
NETWORK SECURITY AND CRYPTOGRAPHY

<table>
<thead>
<tr>
<th>Course code</th>
<th>PEC-CSE-411</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Professional Elective Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Network Security and Cryptography</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Semester 7</td>
<td></td>
</tr>
<tr>
<td>Class work</td>
<td>25 Marks</td>
</tr>
<tr>
<td>Exam</td>
<td>75 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>100 Marks</td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>03 Hours</td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objectives:

1. To understand cryptography theories; algorithms & systems.
2. To understand the symmetric and asymmetric key algorithms.
3. To understand necessary approaches & techniques to build protection mechanisms in order to secure Computer Networks.
4. Acquire fundamental knowledge on the concepts of different security layers.

UNIT- I

Introduction: Plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography.

UNIT- II

Symmetric Key Algorithms: Introduction, algorithms types and modes, DES, AES.

Asymmetric Key Algorithms: Introduction, history of asymmetric key cryptography, RSA, symmetric and asymmetric key cryptography together, Digital signature.

UNIT- III

Internet Security Protocols: Basic concepts, Secure Socket Layer (SSL), Transport Layer Security (TLS), Secure Hyper Text Transfer protocol (SHTTP), Time Stamping Protocol (TSP), Secure Electronic Transaction (SET), SSL versus SET, Electronic Money, Email Security.

UNIT- IV

User Authentication And Kerberos: Introduction, Authentication basics, Passwords, authentication tokens, certificate based authentication, biometric based authentication, Kerberos, key distribution center (KDC), Security handshake pitfalls, single Sign on (SSO) approach.

TEXT/REFERENCE BOOKS:

3. SNMP, Stalling, William (AWL)
4. SNMP: A Guide to Network Management (MGH)
5. Telecom Network Management by H.H. Wang (MGH)
6. Network Management by U. Dlack (MGH)

Course Outcomes:

After completing the course the student will be able to

1. Compare various cryptographic techniques.
2. Work with symmetric & asymmetric key algorithms.
3. Design secure applications.
4. Inject secure coding in the developed applications.
SOFTWARE TESTING

<table>
<thead>
<tr>
<th>Coursecode</th>
<th>PEC-CSE-413</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Professional Elective Course</td>
</tr>
<tr>
<td>Coursetitle</td>
<td>Software Testing</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L T P Credits Semester 7</td>
</tr>
<tr>
<td>Class work</td>
<td>25 Marks</td>
</tr>
<tr>
<td>Exam</td>
<td>75 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>100 Marks</td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>03 Hours</td>
</tr>
</tbody>
</table>

Course Objectives:

1. To study fundamental concepts of software testing including software testing objectives, process, criteria, strategies, and methods.
2. To learn how to plan a test project, design test cases and data, conduct testing operations, manage software problems and defects, generate a testing report.
3. To gain an insight into techniques and skills on how to use modern software testing tools to support software testing projects.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Unit 1

Introduction: Overview of Software Development Life Cycle (SDLC), Significance of Software Testing in SDLC, Objectives and Limitations of software testing, Difference between an Error, Fault and Failure (Software Bug), Software Testing Life Cycle (STLC) and Seven Principles of Software Testing, Role of Software Testing in Software Quality

Unit 2

Test Case Design: Test Cases and Test Suite, Test Case Planning and Designing, Characteristics of Good Test Case Design, Format of test case.

Unit 3

Types of Software Testing: Black box testing, White Box and Gray Box Testing.

Reporting and Analyzing bugs: Problem reports, Content and Characteristics of Problem Report, analysis and Tactics for analyzing a reproducible bug. Making a bug reproducible, Problem/Bug Reporting tools

Unit 4

Test Case Selection: Need of Regression Testing, Non-feasibility of Exhaustive Testing, Selection, Minimization and Prioritization of test cases in regression testing.

Testing Tools: Manual vs Automated Testing, Types of Testing Tools, Automated Test Case Generation
Course Outcomes:
1. Understand software testing and quality as a fundamental component of software
development life cycle
2. Understand and design the test cases for a given problem
3. Understand the process of Reporting of software failures (bugs) using tools like Bugzilla
4. Develop the knowledge of selection of appropriate test cases for execution during
 regression testing

Suggested books:
 Press

Suggested reference books
1. William Perry, Effective Methods for Software Testing, John Wiley & Sons, New York,
 1995.
3. Louise Tamres, Software Testing, Pearson Education Asia, 2002
4. Roger S. Pressman, Software Engineering – A Practitioner’s Approach, Fifth Edition,
5. Boris Beizer, Black-Box Testing – Techniques for Functional Testing of Software and
 New Delhi, 2003.
Course Objectives:
1. The learner will gain knowledge about securing both clean and corrupted systems, protect personal data, and secure computer networks.
2. The learner will understand key terms and concepts in cyber law, intellectual property and cybercrimes, trademarks and domain theft.
3. The learner will be able to examine secure software development practices.
4. The learner will understand principles of web security.
5. The learner will be able to incorporate approaches for risk management and best practices.
6. The learner will gain an understanding of cryptography, how it has evolved, and some key encryption techniques used today.
7. The learner will develop an understanding of security policies (such as confidentiality, integrity, and availability), as well as protocols to implement such policies.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

UNIT 1
UNIT 2

UNIT 3

UNIT 4

Course Outcomes:
1. Analyze and resolve security issues in networks and computer systems to secure an IT infrastructure.
2. Design, develop, test and evaluate secure software.
3. Develop policies and procedures to manage enterprise security risks.
4. Evaluate and communicate the human role in security systems with an emphasis on ethics, social engineering vulnerabilities and training.
5. Interpret and forensically investigate security incidents.

Reference Books:
Course Objectives:
1. To make students know about the Parallelism concepts in Programming.
2. To give the students an elaborate idea about the different memory systems and buses.
3. To introduce the advanced processor architectures to the students.
4. To make the students know about the importance of multiprocessor and multicomputer.
5. To study about data flow computer architectures.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Unit 1
Architecture And Machines: Some definition and terms, interpretation and microprogramming. The instruction set, Basic data types, Instructions, Addressing and Memory. Virtual to real mapping. Basic Instruction Timing.

Unit 2
Cache Memory Notion: Basic Notion, Cache Organization, Cache Data, adjusting the data for cache organization, write policies, strategies for line replacement at miss time, Cache Environment, other types of Cache. Split I and D-Caches, on chip caches, Two level Caches, write assembly Cache, Cache references per instruction, technology dependent Cache considerations, virtual to real translation, overlapping the Tcycle in V-R Translation, studies. Design summary.

Unit 3
Memory System Design: The physical memory, models of simple processor memory interaction, processor memory modeling using queuing theory, open, closed and mixed-queue models, waiting time, performance, and buffer size, review and selection of queuing models, processors with cache.
Unit 4
Concurrent Processors: Vector Processors, Vector Memory, Multiple Issue Machines, Comparing vector and Multiple Issue processors.
Shared Memory Multiprocessors: Basic issues, partitioning, synchronization and coherency, Type of shared Memory multiprocessors, Memory Coherence in shared Memory Multiprocessors.

Course Outcomes:
1) Understand the Concept of Parallel Processing and its applications.
2) Implement the Hardware for Arithmetic Operations.
3) Analyze the performance of different scalar Computers.
4) Develop the Pipelining Concept for a given set of Instructions.
5) Distinguish the performance of pipelining and non-pipelining environment in a processor.

Text Book:
Advance computer architecture by Hwang & Briggs, 1993, TMH.

Reference Books:
Pipelined and Parallel processor design by Michael J. Flynn – 1995, Narosa
Course Objective:
1. Study the basic principles of electronic systems.
2. Understand working of Digital electronics.
3. Understand the working of Display devices.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

UNIT 1
SEMICONDUCTOR DIODE: P-N junction and its V-I Characteristics, P-N junction as a rectifier, Switching characteristics of Diode. Diode as a circuit element, the load-line concept, half-wave and full wave rectifiers, clipping circuits, clamping circuits, filter circuits, peak to peak detector and voltage multiplier circuits.

UNIT 2
ELECTRONIC DEVICES: LED, Zener Diode as voltage regulator, BJT, UJT, MOSFET, Thyristor, DIAC, TRIAC.

UNIT 3
DISPLAY DEVICES: LED, LCD, Seven Segment, Sixteen Segment.

UNIT 4
DIGITAL ELECTRONICS: Binary, Octal and Hexadecimal number system and conversions, Boolean Algebra, Truth tables of logic gates (AND, OR, NOT) NAND, NOR as universal gates, Difference between combinational circuits and sequential circuits, Introduction to flipflops (S-R & J-K).

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. Understand the working of electronic components.
2. Understand the Digital System and various displays.
TEXT BOOK:
1. Integrated Electronics: Millman & Halkias; McGrawHill

REFERENCE BOOKS:
1. Electronics Principles: Malvino; McGrawHill
2. Electronics Circuits: Donald L. Schilling & Charles Belove; McGrawHill
Course Objectives:
Students will be able to understand:
2. The importance of staffing and training
3. The concept of material management and inventory control
4. The components of marketing and advertising, various sources of finance and capital structure.

UNIT 1

UNIT 2
Production Management: Definition, Objectives, Functions and Scope, Production Planning and Control; its significance, stages in production planning and control. Brief introduction to the concepts of material management, inventory control; its importance and various methods.

UNIT 3
Marketing Management - Definition of marketing, marketing concept, objectives & Functions of marketing. Marketing Research - Meaning; Definition; objectives; Importance; Limitations; Process. Advertising - meaning of advertising, objectives, functions, criticism.

UNIT 4
Course outcomes:

Students will be able to understand
2. Importance of staffing and training
3. The concept of material management and inventory control
4. The components of marketing and advertising
5. Various sources of finance and capital structure

Suggested Books:

Suggested Reference Books:
1. Principles & Practices of Management – L.M. Prasad (Sultan Chand & Sons)
DISASTER MANAGEMENT

<table>
<thead>
<tr>
<th>Course code</th>
<th>OEC-CE-451</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Open elective courses</td>
</tr>
<tr>
<td>Course title</td>
<td>Disaster Management</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Class work</td>
<td>25 Marks</td>
</tr>
<tr>
<td>Exam</td>
<td>75 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>100 Marks</td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

Course objectives:

1. To provide basic conceptual understanding of disasters and its relationships with development.
2. Provide an understanding of the social nature of natural hazards and disasters
3. Increase awareness of hazards and disasters around the world and the unequal social consequences stemming from disaster events.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Unit-1

Introduction: Definition of Disaster, hazard, Global and Indian scenario, role of engineer, importance of study in human life, long term effects of disaster. Geological Mass Movement and land disasters, Atmospheric disasters, Disaster Mitigation

Man-made Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.

Unit-3
Case Studies: Damage profile analysis- Uttarkashi/Bhuj/Latur earthquakes, Kedarnath landslide, Kerala floods, cyclone Fani and Amphan, Bihar floods, Covid 19, Forest Related disasters, Mining disasters, Atmospheric disasters.

Unit 4

Disaster Management: Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Use of Internet and software for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.

Course Outcomes:

After completing this course, students should be able:
1. To know natural as well as manmade disaster and their extent and possible effects on the economy.
2. To Plan national importance structures based upon the previous history.
3. To acquaint with government policies, acts and various organizational structures associated with an emergency.
4. To know the simple dos and don’ts in such extreme events and act accordingly.

Reference Books

ENGLISH FOR PROFESSIONALS

<table>
<thead>
<tr>
<th>Course code</th>
<th>HSMC-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Open Elective Course</td>
</tr>
<tr>
<td>Course title</td>
<td>English For Professionals</td>
</tr>
<tr>
<td>Scheme and Credits</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Class work</td>
<td>25 Marks</td>
</tr>
<tr>
<td>Exam</td>
<td>75 Marks</td>
</tr>
<tr>
<td>Total</td>
<td>100 Marks</td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>03 Hours</td>
</tr>
</tbody>
</table>

Course Objectives:

The course aims at developing the desired language (English) skills of students of engineering and technology so that they become proficient in communication to excel in their professional lives. The course aims at developing competence for report writing with a focus on its complex writing techniques and procedures.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

UNIT1
Communication Process Types and Levels, Scopes and significance, Technical and Tools of Effective communication

UNIT2
Speaking files and Personality Development Oral Presentation, Body Language, Voice Modulation, Negotiation, Group Discussion, Interview techniques

UNIT3

UNIT 4
Communication and Media Recent Developments in Media, Context of Communication

SUGGESTED READING
Industrial Training

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Total Contact Hrs. per week</th>
<th>Credit</th>
<th>Examination (Marks)</th>
<th>Schedule</th>
<th>Duration of Exam (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>INTPR-CSE-422</td>
<td>Industrial Training</td>
<td>0 0 6 6</td>
<td>10</td>
<td></td>
<td>200 - 300</td>
<td>500</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Professional Core Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL CREDIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>300</td>
<td>500</td>
</tr>
</tbody>
</table>

2 Hours per week per batch for one teacher and batch size will be decided by the HOD/Chairperson of the department.

Procedure for Examination and continuous Assessment

(A) External Exam Marks
1. Project Evaluation 100 Marks
2. Project Seminar 100 Marks
3. Project Viva 100 marks

(B) Continuous Assessment Marks
1. Assessment by Internal Examiner and Viva (Before the Committee Constituted by Chairman of the Department) 150 Marks
2. Assessment by Industrial Guide 50 Marks