COURSE CODE AND DEFINITIONS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Lecture</td>
</tr>
<tr>
<td>T</td>
<td>Tutorial</td>
</tr>
<tr>
<td>P</td>
<td>Practical</td>
</tr>
<tr>
<td>BSC</td>
<td>Basic Science Courses</td>
</tr>
<tr>
<td>ESC</td>
<td>Engineering Science Courses</td>
</tr>
<tr>
<td>HSMC</td>
<td>Humanities and Social Sciences including Management Courses</td>
</tr>
<tr>
<td>PCC</td>
<td>Professional Core Courses</td>
</tr>
<tr>
<td>LC</td>
<td>Laboratory Courses</td>
</tr>
<tr>
<td>MC</td>
<td>Mandatory Courses</td>
</tr>
<tr>
<td>PT</td>
<td>Practical Training</td>
</tr>
<tr>
<td>S</td>
<td>Seminar</td>
</tr>
</tbody>
</table>
Seminar

Max.Marks-25
Every candidate will have to deliver a seminar of 30 minutes duration on a topic (not from the syllabus) which will be chosen by him / her in consultation with the teacher of the department. The seminar will be delivered before the students and teachers of the department. A three member committee (one coordinator and two teachers of the department of different branches) duly approved by the departmental council will be constituted to evaluate the seminar. The following factors will be taken into consideration while evaluating the candidate.

Distribution of marks will be as follows:

1. Presentation 10 marks
2. Depth of the subject matter 10 marks
3. Answers to the questions 05 marks
Indira Gandhi University, Meerpur, Rewari

B.Tech. (Electrical Engineering)
IIIrd semester w.e.f 2019-20

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class Work</th>
<th>Examination Marks</th>
<th>Total Marks</th>
<th>Credits</th>
<th>Duration of Examination (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Theory</td>
<td>Practical</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>PCC-EE-201</td>
<td>Electric Circuit Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>LC-EE-203</td>
<td>Electric Circuit Analysis</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>3.</td>
<td>PCC-EE-205</td>
<td>Analog Electronics Laboratory</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>LC-EE-207</td>
<td>Analog Electronics Laboratory</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>5.</td>
<td>PCC-EE-209</td>
<td>Electrical Machines-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>LC-EE-211</td>
<td>Electrical Machines-I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>7.</td>
<td>PCC-EE-213</td>
<td>Electromagnetic Fields</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>ESC-ME-209</td>
<td>Engineering Mechanics (Common with ME)</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>*MC-106</td>
<td>Environmental Science</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>0</td>
</tr>
<tr>
<td>10.</td>
<td>Seminar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*MC-106 is a mandatory non–credit course in which the students will be required passing marks in theory.
Electric Circuit Analysis

Course Code: PCC-EE-201G
Category: Engineering Science Course
Course title: Electric Circuit Analysis

<table>
<thead>
<tr>
<th>Scheme</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Outcomes:
At the end of this course, students will demonstrate the ability to;
- Apply network theorems for the analysis of electrical circuits.
- Obtain the transient and steady-state response of electrical circuits.
- Analyze circuits in the sinusoidal steady-state (single-phase and three-phase).
- Analyze two port circuit behavior.

SECTION-A
Network Theorems (AC Circuit)

SECTION-B
Solution of First and Second order networks (AC and DC circuits)
Solution of first and second order differential equations for Series and parallel R-L, R-C, R-L-C circuits, initial and final conditions in network elements, forced and free response, time constants, steady state and transient state response.

SECTION-C
Sinusoidal steady state analysis
SECTION-D

Electrical Circuit Analysis Using Laplace Transforms

Two Port Network and Network Functions
Two Port Networks, terminal pairs, relationship of two port variables, impedance parameters, admittance parameters, transmission parameters and hybrid parameters, interconnections of two port networks. Synthesis of Y21 and Z21 with R ohm terminations Network Tropology and Graph Theory.

Text / Reference Books:
Electric Circuit Analysis Laboratory

Class Work: 25
Exam: 25
Total: 50

<table>
<thead>
<tr>
<th>Course Code</th>
<th>LC-EE-203G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Electric Circuit Analysis (Laboratory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
(i) At least 10 experiments are to be performed by students in the semester.
(ii) At least 7 experiments should be performed from the list, remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus.
(iii) Group of students for practical should be 15 to 20 in number.

LIST OF EXPERIMENTS:
1. Introduction of circuit creation & simulation software like MATLAB etc.
2. Study of Transient response of RC, RL circuit.
3. To find the resonance frequency, Band width of RLC series circuit.
4. To calculate and verify "Z" & “Y” parameters and "ABCD" parameters of a two port network.
5. To determine equivalent parameter of parallel-series, cascading and parallel connections of two port network.
6. To calculate and verify Compensation theorem and Tellegen’s theorem.
7. To synthesize a network of a given network function and verify its response.
8. To calculate and verify Maximum power transfer and Reciprocity theorem.
Note: Use appropriate Software or simulation tool for experiments.

Note:
1. Each laboratory group shall not be more than about 20 students.
2. To allow fair opportunity of practical hands on experience to each student, each experiment may either done by each student individually or in group of not more than 3-4 students. Larger groups be strictly discouraged/disallowed.
Analog Electronics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PCC-EE-205</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Analog Electronics (Theory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Outcomes:
At the end of this course, students will demonstrate the ability to

- Understand the characteristics of transistors.
- Design and analyse various rectifier and amplifier circuits.
- Design sinusoidal and non-sinusoidal oscillators.
- Understand the functioning of OP-AMP and design OP-AMP based circuits.

Section-A

P-N junction diode, I-V characteristics of a diode; review of half-wave and full-wave rectifiers, Zener diodes, clamping and clipping circuits. Structure and I-V characteristics of a BJT; BJT as a switch. BJT as an amplifier: small-signal model, biasing circuits, current mirror; common-emitter, common-base and common-collector amplifiers; Small signal equivalent circuits, high-frequency equivalent circuits

Section-B

MOSFET structure and I-V characteristics. MOSFET as a switch. MOSFET as an amplifier: small-signal model and biasing circuits, common-source, common-gate and common-drain amplifiers; small signal equivalent circuits - gain, input and output impedances, trans-conductance, high frequency equivalent circuit.

Section-C

Feedback: The general feedback structure, properties of negative feedback, the four basic feedback topologies, the series-shunt feedback amplifier, the series-series feedback amplifier, the shunt-shunt and shunt series feedback amplifier.

Section-D

Linear applications of op-amp: Idealized analysis of op-amp circuits. Inverting and non-inverting amplifier, differential amplifier, instrumentation amplifier, integrator, active filter, P, PI and PID controllers and lead/lag compensator using an op-amp, voltage regulator, oscillators (Wein bridge and phase shift). Analog to Digital Conversion.

Nonlinear applications of op-amp: Hysteretic Comparator, Zero Crossing Detector, Square-wave and triangular-wave generators. Precision rectifier, peak detector. Monoshot.

Text/References Book:

Analog Electronics Laboratory

Class Work: 25
Exam: 25
Total: 50

<table>
<thead>
<tr>
<th>Course Code</th>
<th>LC-EE-207</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Analog Electronics (Laboratory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
(i) At least 10 experiments are to be performed by students in the semester.
(ii) At least 7 experiments should be performed from the list, remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus.
(iii) Group of students for practical should be 15 to 20 in number.

List of Experiments
1. To Study the following devices: (a) Analog & digital multimeters (b) Function/ Signal generators (c) Regulated d. c. power supplies (constant voltage and constant current operations) (d) Study of analog CRO, measurement of time period, amplitude, frequency & phase angle using Lissajous figures.
2. To Plot V-I characteristic of P-N junction diode & calculate cut-in voltage, reverse Saturation current and static & dynamic resistances.
3. To Plot V-I characteristic of zener diode and study of zener diode as voltage regulator. Observe the effect of load changes and determine load limits of the voltage regulator.
4. To Plot frequency response curve for single stage amplifier and to determine gain bandwidth product.
5. To Plot drain current - drain voltage and drain current – gate bias characteristics of field effect transistor and measure of Idss&Vp
6. To Plot gain- frequency characteristic of emitter follower & find out its input and output resistances.
7. To Plot input and output characteristics of BJT in CB, CC and CE configurations. Find their h-parameters.
8. To Study half wave rectifier and effect of filters on wave. Also calculate theoretical & practical ripple factor.
9. To Study bridge rectifier and measure the effect of filter network on D.C. voltage output & ripple Factor.
10. To plot the characteristics of MOSFET.
11. To determine the following parameters of OP-AMP.a) Input Bias Current. b) Input Offset Current.
12. c) Input Offset Voltage. d) CMRR

Note:
1. Each laboratory group shall not be more than about 20 students.
2. To allow fair opportunity of practical hands on experience to each student, each experiment may either be done by each student individually or in group of not more than 3-4 students. Larger groups be strictly discouraged/disallowed.
Electrical Machine-I

Course Code	PCC-EE-209
Category	Engineering Science Course
Course title	Electrical Machine-I (Theory)
Scheme	L T P
3 1 -	

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Outcomes:
At the end of this course, students will demonstrate the ability to
- Understand the concepts of magnetic circuits.
- Understand the operation of dc machines.
- Analyse the differences in operation of different dc machine configurations.
- Analyse single phase and three phase transformers circuits.

Section A

Magnetic fields and magnetic circuits
Review of magnetic circuits - MMF, flux, reluctance, inductance; review of Ampere Law and Biot Savart Law; Visualization of magnetic fields produced by a bar magnet and a current carrying coil - through air and through a combination of iron and air; influence of highly permeable materials on the magnetic flux lines.

Electromagnetic force and torque
B-H curve of magnetic materials; flux-linkage vs current characteristic of magnetic circuits; linear and nonlinear magnetic circuits; energy stored in the magnetic circuit; force as a partial derivative of stored energy with respect to position of a moving element; torque as a partial derivative of stored energy with respect to angular position of a rotating element. Examples - galvanometer coil, relay contact, lifting magnet, rotating element with eccentricity or saliency

Section B

DC machines
Basic construction of a DC machine, magnetic structure - stator yoke, stator poles, pole-faces or shoes, air gap and armature core, visualization of magnetic field produced by the field winding excitation with armature winding open, air gap flux density distribution, flux per pole, induced EMF in an armature coil. Armature winding and commutation - Elementary armature coil and commutator, lap and wave windings, construction of commutator, linear commutation Derivation of back EMF equation, armature MMF wave, derivation of torque equation, armature reaction, air gap flux density distribution with armature reaction.
Section C

DC machine - motoring and generation

Armature circuit equation for motoring and generation, Types of field excitations - separately excited, shunt and series. Open circuit characteristic of separately excited DC generator, back EMF with armature reaction, voltage build-up in a shunt generator, critical field resistance and critical speed. V-I characteristics and torque-speed characteristics of separately excited motors. Speed control through armature voltage. Losses, load testing and back-to-back testing of DC machines

Section D

Transformers

Text / Reference Books:

Electrical Machines-I Laboratory

Class Work: 25
Exam: 25
Total: 50

<table>
<thead>
<tr>
<th>Course Code</th>
<th>LC-EE-211</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Electrical Machines-I (Laboratory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
(i) At least 10 experiments are to be performed by students in the semester.
(ii) At least 7 experiments should be performed from the list, remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus.
(iii) Group of students for practical should be 15 to 20 in number.

LIST OF EXPERIMENTS:
1. To study conversion of 3 Phase to six phase using 3 single phase transformers.
2. To study three phase rectifiers & supply configuration. In 3 phase.
3. To perform Sumpner's Back to back test on 1-phase transformers.
4. To study Parallel operation of two 1-phase transformers.
5. To perform load test on DC shunt generator.
6. To study Speed control of DC shunt motor.
7. To study Swinburne’s test of DC shunt motor.
8. To study Hopkinson’s test of DC shunt M/Cs.

Note:
1. Each laboratory group shall not be more than about 20 students.
2. To allow fair opportunity of practical hands on experience to each student, each experiment may either be done by each student individually or in group of not more than 3-4 students. Larger groups be strictly discouraged/disallowed.
Electromagnetic Fields

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PCC-EE-213</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Electromagnetic Fields (Theory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. Understand the basic laws of electromagnetism.
2. Obtain the electric and magnetic fields for simple configurations under static conditions.
3. Analyse time varying electric and magnetic fields.
4. Understand Maxwell’s equation in different forms and different media. To understand the propagation of EM waves.

SECTION - A
Review of Vector Calculus
Vector algebra-addition, subtraction, components of vectors, scalar and vector multiplications triple products, three orthogonal coordinate systems (rectangular, cylindrical and spherical). Vector calculus differentiation, partial differentiation, integration, vector operator del, gradient, divergence and Curl; integral theorems of vectors. Conversion of a vector from one coordinate system to another.

SECTION - B
Static Electric Field

Conductors, Dielectrics and Capacitance
Current and current density, Ohms Law in Point form, Continuity of current, Boundary conditions of perfect dielectric materials. Permittivity of dielectric materials, Capacitance, Capacitance of a two wire line, Poisson’s equation, Laplace’s equation. Solution of Laplace and Poisson’s equation, Application of Laplace’s and Poisson’s equations.

SECTION – C
Static Magnetic Fields

Magnetic Forces, Materials and Inductance

SECTION – D

Time Varying Fields and Maxwell’s Equations
Faraday’s law for Electromagnetic induction, Displacement current, Point form of Maxwell’s equation, Integral form of Maxwell’s equations, Motional Electromotive forces. Boundary Conditions.

Electromagnetic Waves
Derivation of Wave Equation, Uniform Plane Waves, Maxwell’s equation in Phasor form, Wave equation in Phasor form, Plane waves in free space and in a homogenous material. Wave equation for a conducting medium, Plane waves in lossy dielectrics, Propagation in good conductors, Skin effect. Poynting theorem.

Text / References Books:
Engineering Mechanics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>ESC-ME-209</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Engineering Mechanics (Theory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Outcomes: At the end of this course, students will demonstrate the ability to

1. Understand the concepts of co-ordinate systems.
2. Analyse the three-dimensional motion.
3. Understand the concepts of rigid bodies.
4. Analyse the free-body diagrams of different arrangements. Analyse torsional motion and bending moment.

UNIT-I

Introduction to vectors and tensors and co-ordinate systems: Introduction to vectors and tensors and coordinate systems; Vector and tensor algebra; Symmetric and anti-symmetric tensors; Eigen values and Principal axes.

Three-dimensional Rotation: Three-dimensional rotation: Euler’s theorem, Axis-angle formulation and Euler angles; Coordinate transformation of vectors and tensors.

UNIT-II

Kinematics of Rigid Body: Concept of rigid body, velocity and acceleration, relative velocity, translation and rotation of rigid bodies, equations of motion for translation and rotation, problem. Centroid, Centre of mass and Centre of gravity. Determination of centroid, centre of mass and centre of gravity by integration method of regular and composite figures and solid objects, Problems.

Kinetics of Rigid Bodies: Kinetics of rigid bodies: Angular momentum about a point; Inertia tensor: Dentition and computation, Principal moments and axes of inertia, Parallel and perpendicular axes theorems; Mass moment of inertia of symmetrical bodies, cylinder, sphere, cone etc., Area moment of inertia and Polar moment of inertia, Forces and moments; Newton-Euler’s laws of rigid body motion.

UNIT-III

Free Body Diagram: Free body diagrams; Examples on modelling of typical supports and joints and discussion on the kinematic and kinetic constraints that they impose.
General Motion: Examples and problems. General planar motions. General 3-D motions. Free precession, Gyroscopes, Rolling coin.

UNIT-IV

Bending Moment: Transverse loading on beams, shear force and bending moment in beams, analysis of cantilevers, simply supported beams and overhanging beams, relationships between loading, shear force and bending moment, shear force and bending moment diagrams.

Torsional Motion: Torsion of circular shafts, derivation of torsion equation, stress and deformation in circular and hollow shafts.

Friction: Concept of Friction; Laws of Coulomb friction; Angle of Repose; Coefficient of friction.

Text / References:
1. Mechanics by R.C. Hibbler, Pearson Publication
ENVIRONMENTAL SCIENCE
MC-106

L T P Credits
3 0 1 -

Class Work : 25 Marks
Theory : 75 Marks

Duration of Exam: 3 Hrs.

Theory 75 Marks Field Work 25 Marks (Practical/Field visit)

Unit-1 The Multidisciplinary nature of environment studies. Definition, scope and importance.

Unit-2 Natural Resources:
Renewable and non-renewable resources: Natural resources and associated problems.

a) Forest resources: Use and over-exploitation: deforestation, case studies. Timber extraction, mining dams and their effects on forests and tribal people.

b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.

c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.

d) Food resources: World food problems, changes, caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, Water logging, salinity, case studies.

e) Energy resources: Growing energy needs; renewable and non-renewable energy sources, use of alternate energy sources, case studies.

f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.

* Role of an individual in conservation of natural resources.

* Equitable use of resources for sustainable lifestyles.

Unit-3 Ecosystems:

* Producers, consumers and decomposers.

* Energy flow in the ecosystem.

* Ecological succession.

* Food chains, food webs and ecological pyramids.

* Introduction, types, characteristic features, structure and function of the following eco-system:

 a. Forest ecosystem.

 b. Grassland ecosystem.

 c. Desert ecosystem.

 d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) (6 lectures)

Unit-4 Biodiversity and its conservation
* Introduction - Definition: Genetic, Species and ecosystem diversity.
* Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values.
* Biodiversity at global, National and local levels.
* India as a mega-diversity nation.
* Hot-spots of biodiversity.
* Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.
* Endangered and endemic species of India.
* Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity.

Unit-5 Environmental pollution:
Definition, causes, effects and control measures of:
 a) Air pollution.
 b) Water pollution
 c) Soil pollution
 d) Marine pollution
 e) Noise pollution
 f) Thermal pollution
 g) Nuclear hazards
* Solids waste management: causes, effects and control measures of urban and industrial wastes.
* Role of an individual in prevention of pollution.
* Pollution case studies.
* Disaster management: floods, earthquake, cyclone and landslides.

(8 lectures)

Unit-6 Social issues and the Environment:
* From unsustainable to sustainable development.
* Urban problems related to energy.
* Water conservation, rain water harvesting, watershed management.
* Resettlement and rehabilitation of people: its problems and concerns case studies.
* Environmental ethics: Issues and possible solutions.
* Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies.
* Wasteland reclamation.
* Consumerism and waste products.
* Environment Protection Act.
* Air (Prevention and Control of pollution) Act.
* Wildlife Protection Act.
* Forest Conservation Act.
* Issues involved in enforcement of environmental legislation.
* Public awareness. (7 lectures)

Unit-7 Human population and the Environment.

Population growth, variation among nations.
Population explosion- Family Welfare Programme.
Environment and human health.
Human Rights.
Value Education.
HIV/AIDS.
Woman and Child Welfare
Role of Information Technology in Environment and human health.

Case Studies. (6 lectures)

Unit-8 Field Work:

* Visit to a local area to document environmental assets - river/forest/grassland/hill/mountain.
* Visit to a local polluted site-urban/Rural/ Industrial/ Agricultural.
* Study of common plants, insects, birds.

Study of simple ecosystems- pond, river, hill slopes, etc. (Field work equal to 10 lecture hours)

References

2. Bharucha, Frach, The Biodiversity of India, MApin Publishing Pvt. Ltd. Ahmedabad-380013, India,
7. Down to Earth, Centre for Science and Environment (R).
The scheme of the paper will be under:

The subject of Environmental Studies will be included as a qualifying paper in all UG Courses and the students will be required to qualify the same otherwise the final result will not be declared and degree will not be awarded.

The duration of the course will be 40 lectures. The examination will be conducted along with the semester examinations.

Exam. Pattern: In case of awarding the marks, the paper will carry 100 marks. Theory: 75 marks, Practical/ Field visit: 25 marks.

The structure of the question paper will be:

Part- A: Short Answer Pattern : 15 marks
Part- B: Essay Type with inbuilt choice: 60 marks
Part-C: Field Work (Practical): 25 marks

Instructions for Examiners:

Part- A: Question No. 1 is compulsory and will contain five short-answer type question of 3 marks each covering the entire syllabus.

Part-B: Eight essay type questions (with inbuilt choice) will be set from the entire syllabus and the candidate will be required to answer any four of them. Each essay type question will be of 15 marks.

The examination of the regular students will be conducted by the concerned college/Institute. Each student will be required to score minimum 40% marks separately in theory and practical/Field visit. The marks in this qualifying paper will not be included in determining the percentage of marks obtained for the award of degree.

However, these marks will be shown in the detailed marks certificate of the students.
Indira Gandhi University, Meerpur, Rewari
B.Tech. (Electrical Engineering)
4TH semester w.e.f 2019-20

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Schedule</th>
<th>Marks of Class Work</th>
<th>Examination Marks</th>
<th>Total Marks</th>
<th>Credits</th>
<th>Duration of Examination (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td>Theory Practical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCC-EE-202</td>
<td>Digital Electronics</td>
<td>3 0 0</td>
<td>25</td>
<td>75 0</td>
<td>100</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>LC-EE-204</td>
<td>Digital Electronics Laboratory</td>
<td>0 0 2</td>
<td>25</td>
<td>0 25</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PCC-EE-206</td>
<td>Electrical Machines-II</td>
<td>3 1 0</td>
<td>25</td>
<td>75 0</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>LC-EE-208</td>
<td>Electrical Machines-II Laboratory</td>
<td>0 0 2</td>
<td>25</td>
<td>0 25</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PCC-EE-210</td>
<td>Power Electronics</td>
<td>3 0 0</td>
<td>25</td>
<td>75 0</td>
<td>100</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>LC-EE-212</td>
<td>Power Electronics Laboratory</td>
<td>0 0 2</td>
<td>25</td>
<td>0 25</td>
<td>50</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>PCC-EE-214</td>
<td>Signals and Systems</td>
<td>3 0 0</td>
<td>25</td>
<td>75 0</td>
<td>100</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>BSC-MATH-204</td>
<td>Mathematics-III (Probability and Statistics)</td>
<td>3 1 0</td>
<td>25</td>
<td>75 0</td>
<td>100</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>*MC-105</td>
<td>Indian Constitution</td>
<td>0 0 2</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>BSC-BIO-201</td>
<td>Biology-I</td>
<td>2 1 0</td>
<td>25</td>
<td>75 0</td>
<td>100</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Seminar</td>
<td>-</td>
<td>- - -</td>
<td>-</td>
<td>25 1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>775 24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: At the end of 4th semester each student has to undergo Practical Training of 4/6 weeks in an Industry/ Institute/ Professional Organization/ Research Laboratory/ training centre etc. and submit typed report along with a certificate from the organization & its evaluation shall be carried out in the 5th Semester.

*MC 105G is a mandatory non credit course in which the student will be required passing marks in class work.
Digital Electronics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PCC-EE-202</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Digital Electronics (Theory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Outcomes:
At the end of this course, students will demonstrate the ability to:
- Understand working of logic families and logic gates.
- Design and implement Combinational and Sequential logic circuits.
- Understand the process of Analog to Digital conversion and Digital to Analog conversion.
- Be able to use PLDs to implement the given logical problem.

SECTION-A
Fundamentals of Digital Systems and logic families:
Digital signals, digital circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal hexadecimal number, binary arithmetic, one’s and two’s complements arithmetic, codes, error detecting and correcting codes, characteristics of digital ICs, digital logic families, TTL, Schottky TTL and CMOS logic, interfacing CMOS and TTL, Tri-state logic.

SECTION-B
Combinational Digital Circuits:
Standard representation for logic functions, K-map representation, simplification of logic functions using K-map, minimization of logical functions. Don’t care conditions, Multiplexer, De- Multiplexer/Decoders, Adders, Subtractors, BCD arithmetic, carry look ahead adder, serial adder, ALU, elementary ALU design, popular MSI chips, digital comparator, parity checker/generator, code converters, priority encoders, decoders/drivers for display devices, Q-M method of function realization.

SECTION-C
Sequential circuits and systems:
A 1-bit memory, the circuit properties of Bistable latch, the clocked SR flip flop, Master Slave J- K, T and D types flip flops, applications of flip flops, shift registers, applications of shift registers, serial to parallel converter, parallel to serial converter, ring counter, sequence generator, ripple(Asynchronous) counters, synchronous counters, counters design using flip flops, special counter IC’s, asynchronous sequential counters, applications of counters.

SECTION-D
A/D and D/A Converters:
Introduction to Digital to analog converters: weighted resistor/converter, R-2R Ladder D/A converter, specifications for D/A converters, sample and hold circuit, Introduction to analog to digital converters: quantization and encoding, parallel comparator A/D converter,

Semiconductor memories and Programmable logic devices:
Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory(RAM), content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, Programmable logic array, Programmable array logic.

Text/Reference books:
Digital Electronics Laboratory

Class Work: 25
Exam: 25
Total: 50

<table>
<thead>
<tr>
<th>Course Code</th>
<th>LC-EE-204</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Digital Electronics (Laboratory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:

(i) At least 10 experiments are to be performed by students in the semester.
(ii) At least 7 experiments should be performed from the list, remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus

LIST OF EXPERIMENTS
1. To study of TTL gates – AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR.
2. To design & realize a given function using K-maps and verify its performance.
3. To verify the operation of multiplexer & Demultiplexer.
4. To verify the operation of comparator.
5. To verify the truth tables of S-R, J-K, T & D type flip flops.
6. To study FLIP-FLOP conversion.
7. To verify the operation of bi-directional shift register.
8. To design & verify the operation of 3-bit synchronous counter.
9. To design and verify the operation of synchronous UP/DOWN decade counter using J K flip-flops & drive a seven-segment display using the same.
10. To design and verify the operation of asynchronous UP/DOWN decade counter using J K flip-flops & drive a seven-segment display using the same.
11. To design a 4 bit shift register and verify its operation.

Note:

1. Each laboratory group shall not be more than about 20 students.
2. To allow fair opportunity of practical hands on experience to each student, each experiment may either done by each student individually or in group of not more than 3-4 students. Larger groups be strictly discouraged/disallowed.
ELECTRICAL MACHINES-II

Course Code: PCC-EE-206
Category: Engineering Science Course
Course title: Electrical Machines-II (Theory)

Notes: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Outcomes:
At the end of this course, students will demonstrate the ability to:
1. Understand the concepts of rotating magnetic fields.
2. Understand the operation of ac machines.
3. Analyse performance characteristics of ac machines.
4. Impart knowledge on construction, principle of operation and performance of ac machine.
5. Prepare the students to have a basic knowledge about motoring, generating and braking mode of ac machines

UNIT-I
Poly-phase Induction Motor: Constructional features, Principal of operation, production of rotating magnetic field, induction motor action, torque production, testing, development of equivalent circuit, performance characteristics, circle diagram, starting methods, double cage and deep bar motors.

UNIT-II
Poly-phase Induction Motor: Methods of speed control - stator voltage control, stator resistance control, frequency control, rotor resistance control, slip power recovery control
Induction Generator: Principle of operation, types and applications.
Single Phase Induction motors: Double revolving field theory, cross field theory, different types of single phase induction motors, circuit model of single phase induction motor.

UNIT-III
Synchronous Generator: Principle, construction of cylindrical rotor and salient pole machines, winding, EMF equation, Armature reaction, testing, model of the machine, regulation – synchronous reactance method, Potier triangle method. Output power equation, power angle curve.

UNIT-IV
Three Phase Synchronous Generators: Transient and sub-transient reactance, synchronization, parallel operation.
Synchronous Motor: Principles of synchronous motor, power angle curve, V-curve, starting, damper winding, synchronous condenser, applications.
TEXT/REFERENCE BOOKS:
1. Principle of Electrical Machines, V K Mehta, Rohit Mehta, S Chand
2. Electric Machines, Ashfaq Hussain, Dhanpat Rai
4. Generalized theory of Electrical Machines: P.S. Bhimbra(Khanna Pub.)
5. Electric Machinery, Fitzgerald and Kingsley, MGH.
Electrical Machines-II Laboratory

Class Work: 25
Exam: 25
Total: 50

<table>
<thead>
<tr>
<th>Course Code</th>
<th>LC-EE-208</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Electrical Machines-II (Laboratory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
(i) At least 10 experiments are to be performed by students in the semester.
(ii) At least 7 experiments should be performed from the list, remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus

LIST OF EXPERIMENTS:
1. To perform the open circuit test and block rotor test on 3 phase induction motor and draw the circle diagram.
2. To study the speed control of induction motor by rotor resistance control.
3. To conduct the load test to determine the performance characteristics of the I.M.
4. To compute the torque v/s speed characteristics for various stator voltages.
5. To perform the open circuit test and block rotor test on single-phase induction motor and determine equivalent circuit parameters.
6. To perform O.C. test on synchronous generator and determine the full load regulation of a three phase synchronous generator by synchronous impedance method.
7. To Study and Measure Synchronous Impedance and Short circuit ratio of Synchronous Generator.
8. Study of Power (Load) sharing between two Three Phase alternators in parallel operation Condition.
10. Synchronization of two Three Phase Alternators by
 a) Synchroscope Method
 b) Three dark lamp Method
 c) Two bright one dark lamp Method
11. Determination of sequence impedances of synchronous machine for various stator voltages.

Note:
1. Each laboratory group shall not be more than about 20 students.
2. To allow fair opportunity of practical hands on experience to each student, each experiment may either done by each student individually or in group of not more than 3-4 students. Larger groups be strictly discouraged/disallowed.
POWER ELECTRONICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PCC-EE-210</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Power Electronics (Theory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Outcomes:
At the end of this course students will demonstrate the ability to:
• Understand the differences between signal level and power level devices.
• Analyse controlled rectifier circuits.
• Analyse the operation of DC-DC choppers.
• Analyse the operation of voltage source inverters.

SECTION-A
Power switching devices
Diode, Thyristor, MOSFET, IGBT: I-V Characteristics; Protections, series and parallel connections, Firing circuit for thyristor; Voltage and current commutation of a thyristor; pulse transformer and opto-coupler.
AC REGULATORS: Types of regulator, equation of load current, calculation of extinction angle, output voltage equation, harmonics in load voltage.

SECTION-B
Thyristor rectifiers
Single-phase half-wave and full-wave rectifiers, Single-phase full-bridge thyristor rectifier with R-load and highly inductive load; Three-phase full-bridge thyristor rectifier with R-load and highly inductive load; Input and output wave shape and power factor.
DC-DC buck converter
Elementary chopper with an active switch and diode, concepts of duty ratio and average voltage, power circuit of a buck converter, analysis and waveforms at steady state, duty ratio control of output voltage.

SECTION-C
DC-DC boost converter
Power circuit of a boost converter, analysis and waveforms at steady state, relation between duty ratio and average output voltage.

Single-phase voltage source inverter
Power circuit of single-phase voltage source inverter, switch states and instantaneous output voltage, square wave operation of the inverter, concept of average voltage over a switching cycle, bipolar sinusoidal modulation and unipolar sinusoidal modulation, modulation index and output voltage

SECTION-D

Three-phase voltage source inverter
Power circuit of a three-phase voltage source inverter, switch states, instantaneous output voltages, average output voltages over a sub-cycle, three-phase sinusoidal modulation.

CYCLOCONVERTERS: Basic principle of frequency conversion, types of cycloconverter, non-circulating and circulating types of cycloconverters

Text/References Books:-
Power Electronics Laboratory

Class Work: 25
Exam: 25
Total: 50

<table>
<thead>
<tr>
<th>Course Code</th>
<th>LC-EE-212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Power Electronics (Laboratory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
(i) At least 10 experiments are to be performed by students in the semester.
(ii) At least 7 experiments should be performed from the list, remaining three experiments may either be performed from the above list or designed and set by the concerned institution as per the scope of the syllabus

LIST OF EXPERIMENTS
2. To Study Characteristics of IGBT & MOSFET.
3. To study R, RC and UJT firing Circuit.
4. To Study of Pulse transformer & optocoupler technique
5. To Study of SCR Communication Technique Class A-E.
8. To control speed of a small DC motor using MOSFET based Chopper with output voltage control technique
9. To Study of Mc Murray - Bed ford Half & Full Bridge Inverter
10. To control speed of small AC induction motor using Single Phase non circulating type bridge by frequency conversion.
11. To Study single phase cycloconverter.

Note:
1. Each laboratory group shall not be more than about 20 students.
2. To allow fair opportunity of practical hands on experience to each student, each experiment may either be done by each student individually or in group of not more than 3-4 students. Larger groups be strictly discouraged/disallowed.
Mathematics-III

Theory : 75
Class Work : 25
Total : 100
Duration of Exam : 3 Hrs.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Outcomes:
The students will learn:
 1. To find roots of polynomial and transcendental equations using numerical methods.
 2. To conduct numerical differentiation and numerical integration.
 3. To solve differential equations using numerical methods.
 4. To formulate and solve problems involving random variables.
 5. To apply statistical methods for analysing experimental data.

Unit-I

Unit-II
Numerical Methods 2: Taylor’s series, Euler and modified Euler’s methods, Runge-Kutta method of fourth order for solving first and second order ordinary differential equations, Finite difference solution of two dimensional Laplace equation and Poission equation, Implicit and explicit methods for one dimensional heat equation (Bender-Schmidt and Crank-Nicholson methods), Finite difference explicit method for wave equation

Unit-III
Probability: Probability spaces, Conditional probability, Bayes’ theorem, Discrete random variables, Bernoulli distribution, Binomial distribution, Poisson distribution, Poisson approximation to the Binomial distribution, Expectation of discrete random variables,
Moments, Variance of a sum, Correlation coefficient, Continuous random variables and their properties, Distribution functions and Densities, Normal, Exponential and Gamma densities

Unit-IV

Sampling: Measures of central tendency, Moments, Skewness and Kurtosis, Testing of hypothesis, Test of significance, Large sample test for single proportion, Difference of proportions, Tests for single mean, Difference of means and Difference of standard deviations, Test for ratio of variances, Chi-square test for goodness of fit and Independence of attributes

Reference Books:
1. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons
2. P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand and Company
3. S. S. Sastry, Introductory Methods of Numerical Analysis, PHI
5. S. Ross, A First Course in Probability, Pearson Education India
6. W. Feller, An Introduction to Probability Theory and its Applications, Wiley India
Signals and Systems

<table>
<thead>
<tr>
<th>Course Code</th>
<th>PCC-EE-214</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Signals and Systems (Theory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Outcomes:
On completion of the course, student will able to
1. Understand mathematical description and representation of continuous and discrete time signals and systems.
2. Develop input output relationship for linear shift invariant system and understand the convolution operator for continuous and discrete time system.
3. Understand and resolve the signals in frequency domain using Fourier series and Fourier transforms.
4. Understand the limitations of Fourier transform and need for Laplace transform
5. Understand the basic concept of various signals and system
6. To understand the new tool in Z transform and numerical ability to analyze the circuit in Z domain.

SECTION-A
Signals: Definition, types of signals and their representations: continuous-time, discrete-time, periodic, non-periodic, even, odd, energy, power, deterministic, random, one-dimensional, multi-dimensional, Shifting and scaling operations, Linear Time Invariant and Causal systems; commonly used signals (in continuous-time as well as in discrete-time): unit impulse, unit step, unit ramp (and their inter-relationships), exponential, rectangular pulse, sinusoidal; operations on continuous-time and discrete-time signals (including transformations of independent variables).

SECTION-B
Fourier Transforms (FT): (i) Definition, conditions of existence of FT, properties, magnitude and phase spectra, Some important FT theorems, Parseval’s theorem, Inverse FT, relation between LT and FT (ii) Discrete time Fourier transform (DTFT), inverse DTFT, convergence, properties and theorems, Comparison between continuous time FT and DTFT, Sampling theorem, Applications of Fourier Transform.

SECTION-C
Time and frequency domain analysis of systems, Analysis of first order and second order systems, continuous-time (CT) system analysis using LT, system functions of CT systems, poles and zeros, block diagram representations; discrete-time system functions, block diagram representation, illustration of the concepts of system bandwidth and rise time through the analysis of a first order CT low pass filter

SECTION-D

Laplace-Transform (LT) and Z-transform (ZT): (i) One-sided LT of some common signals, important theorems and properties of LT, inverse LT, solutions of differential equations using LT, Bilateral LT, Regions of convergence (ROC) (ii) One sided and Bilateral Z-transforms, ZT of some common signals, ROC, Properties and theorems, solution of difference equations using one-sided ZT, s- to z-plane mapping.

Text/ Reference Books:
3. Signals & System by A Anand Kumar, Third edition PHI.
4. Schaume Series on Signals & Systems, HSU & RANJAN, TMH, India
CONSTITUTION OF INDIA

CONSTITUTION OF INDIA– BASIC FEATURES AND FUNDAMENTAL PRINCIPLES

The Constitution of India is the supreme law of India. Parliament of India can not make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the “basic structure” of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of “Constitutionalism” – a modern and progressive concept historically developed by the thinkers of “liberalism” – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of “constitutionalism” in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India’s legacy of “diversity”. It has been said that Indian constitution reflects ideals of its freedom movement, however, few critics have argued that it does not truly incorporate our own ancient legal heritage and cultural values. No law can be “static” and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950.

The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution but also strengthened the same through progressive interpretations of the text of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it “as one of the strongest court in the world”.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>MC-105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Engineering Science Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Constitution of India (Theory)</td>
</tr>
<tr>
<td>Scheme</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
COURSE CONTENTS

1. Meaning of the constitution law and constitutionalism.
2. Historical perspective of the Constitution of India.
3. Salient features and characteristics of the Constitution of India.
4. Scheme of the fundamental rights.
5. The scheme of the Fundamental Duties and its legal status.
7. Federal structure and distribution of legislative and financial powers between the Union and the States.
8. Parliamentary Form of Government in India – The constitution powers and status of the President of India
9. Amendment of the Constitutional Powers and Procedure
10. The historical perspectives of the constitutional amendments in India
12. Local Self Government – Constitutional Scheme in India
13. Scheme of the Fundamental Right to Equality
14. Scheme of the Fundamental Right to certain Freedom under Article 19
15. Scope of the Right to Life and Personal Liberty under Article 21

REFERENCES:

2. The Constitution of India by P.M.Bakshi
3. Constitution Law of India by Narender Kumar
4. Bare Act by P. M. Bakshi
Biology-I

Course code: BSC-BIO-201
Category: Basic Science Course
Course title: Biology-I

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Branches (B. Tech.) Common For All Branches

Class work: 25 Marks
Exam: 75 Marks
Total: 100 Marks
Duration of Exam: 03 Hours

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objectives
To convey that Biology is an important scientific discipline.
To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine.
To convey that “Genetics is to biology what Newton’s laws are to Physical Sciences”
To study the biomolecules that are basis of life.
To understand the tools used in modern genetic engineering and its role.
To understand the role of biotechnology in different fields.

UNIT – I
Introduction to living world: Concept and definition of Biology; Aspect of biology. Need to study biology. Characteristic features of living organisms; Cell theory, Structure of Prokaryotic and Eukaryotic cell. Distinguish between animal and plant cell. Concept of single celled organisms, Types of microbes and their important properties. Economic importance of microbes.

UNIT – II
Introduction to Biomolecules: Definition, structure and important functions of carbohydrates (glucose, fructose, disaccharides, starch and cellulose), lipids (phospholipid, cholesterol), Amino acids
Proteins- structure and function. Primary secondary, tertiary and quaternary structure.
Nucleic acid- Structure of DNA and RNA, types of RNA, Watson and Crick model of DNA

UNIT – III

Introduction to Genetic Engineering: Concept of genetic engineering. Tools used in recombinant DNA Technology. Restriction enzymes and DNA modifying enzymes, ligases.
Gene cloning; plasmid vector. Transgenic plants and animals

UNIT – IV

Applications of Biotechnology: Applications of biotechnology in Agriculture, Medicine, Environment (sewage treatment), enzyme technology.

Course Outcomes
After studying the course, the student will be able to:
Understand about living organisms, type of cells and microbes.
Identify DNA as a genetic material in the molecular basis of information transfer.
Get knowledge that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine.
Highlight the concepts of genetic engineering and application or sustainable development.
Understand the impact of biotechnology on environment, health agriculture and industry.

References:
1) Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson Education Ltd
2) Outlines of Biochemistry, Conn, E.E; Stumpff, P.K; Bruening, G; Doi, R.H. John Wiley and Sons
4) Molecular Genetics (Second edition), Stent, G. S.; and Calender, R. W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher
6) https://onlinecourses.nptel.ac.in/noc18_bt23 by K. Suraishkumar and Madhulika Dixit