Indira Gandhi University, Meerpur, Rewari

Scheme of Studies and Examination

B.Tech (Electronics and Communication Engineering)

Semester 7th and 8th

Scheme effective from 2021-22

Course code and definitions:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Lecture</td>
</tr>
<tr>
<td>T</td>
<td>Tutorial</td>
</tr>
<tr>
<td>P</td>
<td>Practical</td>
</tr>
<tr>
<td>BSC</td>
<td>Basic Science Courses</td>
</tr>
<tr>
<td>ESC</td>
<td>Engineering Science Courses</td>
</tr>
<tr>
<td>HSMC</td>
<td>Humanities and Social Sciences including Management courses</td>
</tr>
<tr>
<td>PCC</td>
<td>Professional Core Courses</td>
</tr>
<tr>
<td>LC</td>
<td>Laboratory Courses</td>
</tr>
<tr>
<td>MC</td>
<td>Mandatory Courses</td>
</tr>
<tr>
<td>PT</td>
<td>Practical Training</td>
</tr>
<tr>
<td>S</td>
<td>Seminar</td>
</tr>
<tr>
<td>TH</td>
<td>Theory</td>
</tr>
<tr>
<td>PR</td>
<td>Practical</td>
</tr>
<tr>
<td>INTPR</td>
<td>Industrial Training Project</td>
</tr>
</tbody>
</table>

General Notes:

1. Mandatory courses are non-credit courses in which students will be required passing marks in internal assessments.
2. Students will be allowed to use non-programmable scientific calculator. However, sharing of calculator will not be permitted in the examination.
3. Students will be permitted to opt for any elective course run by the department. However, the department shall offer those electives for which they have expertise. The choice of the students for any elective shall not be binding for the department to offer, if the department does not have expertise. To run the elective course a minimum of 1/3rd students of the class should opt for it.
SCHEME OF STUDIES & EXAMINATIONS
B.TECH (Electronics and Communication Engineering)
SEMESTER –7th w.e.f. 2021-22

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Total Contact Hrs. per week</th>
<th>Credit</th>
<th>Examination Schedule (Marks)</th>
<th>Duration of Exam (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professional Elective Course</td>
<td>Refer to Annexure-I</td>
<td>Professional Elective-III</td>
<td>3 0 0</td>
<td>3 3</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Professional Core Course</td>
<td>PCC-ECE-401</td>
<td>Fiber Optic Communication</td>
<td>3 0 0</td>
<td>3 3</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Professional Core Course</td>
<td>PCC-ECE-402</td>
<td>Antenna and Wave</td>
<td>3 0 0</td>
<td>3 3</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Professional Elective Course</td>
<td>Refer to Annexure-I</td>
<td>Professional Elective-IV</td>
<td>3 0 0</td>
<td>3 3</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Professional Elective Course</td>
<td>Refer to Annexure-I</td>
<td>Professional Elective-V</td>
<td>3 0 0</td>
<td>3 3</td>
<td>25</td>
<td>75</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Open Elective Course</td>
<td>Refer to Annexure-II (OEC-I)</td>
<td>Open Elective-I</td>
<td>3 0 0</td>
<td>3 3</td>
<td>25</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>Mandatory Course</td>
<td>MC-417</td>
<td>Constitution of India</td>
<td>2 0 0</td>
<td>2 0</td>
<td>Grading</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>LAB</td>
<td>LC-ECE-405</td>
<td>Data Communication Networking Lab</td>
<td>0 0 2</td>
<td>1.5</td>
<td>25</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>Professional Core Course</td>
<td>PT-ECE-425</td>
<td>Practical Training-II</td>
<td>0 0 0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TOTAL CREDIT 19.5 175 450 25 650

NOTE:
1. Practical Training II: The evaluation of Practical Training-II will be based on seminar, viva-voce, report submitted by the students. According to performance, the students will be awarded grades A, B, C, F. A student who is awarded ‘F’ grade is required to repeat Practical Training.
Scheme of Studies & Examinations

B.TECH (Electronics and Communication Engineering)
Semester – 8th w.e.f. 2021-22

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>Total Contact Hrs. per week</th>
<th>Credit</th>
<th>Examination Schedule (Marks)</th>
<th>Duration of Exam (Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Professional Core Course</td>
<td>INTPR-ECE-408</td>
<td>Industrial Training</td>
<td>0 0 6</td>
<td>6</td>
<td>10</td>
<td>200 -</td>
<td>300 500</td>
</tr>
</tbody>
</table>

TOTAL CREDIT

2 Hours per week per batch for one teacher and batch size will be decided by the HOD/Chairperson of the department.

Procedure for Examination and Continuous Assessment

A) External Exam Marks
1. Project Evaluation 100 Marks
2. Project Seminar 100 Marks
3. Project Viva 100 marks

B) Continuous Assessment Marks
1. Assessment by Internal Examiner and Viva (Before the Committee Constituted by Chairman of the Department) 150 Marks
2. Assessment by Industrial Guide 50 Marks
Annexure I

Professional Elective-III

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PEC-ECE-409</td>
<td>Wireless Communication</td>
</tr>
<tr>
<td>2</td>
<td>PEC-ECE-410</td>
<td>Mobile Communication and Networks</td>
</tr>
<tr>
<td>3</td>
<td>PEC-ECE-403</td>
<td>Satellite Communication</td>
</tr>
</tbody>
</table>

Professional Elective-IV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PEC-ECE-411</td>
<td>Data Communication Networking & Security</td>
</tr>
<tr>
<td>2</td>
<td>PEC-ECE-412</td>
<td>Error Correcting Codes</td>
</tr>
<tr>
<td>3</td>
<td>PEC-ECE-404</td>
<td>Microwave theory and technique</td>
</tr>
</tbody>
</table>

Professional Elective-V

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PEC-ECE-413</td>
<td>Wireless Sensor Networks</td>
</tr>
<tr>
<td>2</td>
<td>PEC-ECE-414</td>
<td>Radar and Sonar</td>
</tr>
<tr>
<td>3</td>
<td>PEC-ECE-415</td>
<td>Embedded Systems</td>
</tr>
</tbody>
</table>

Annexure-II

Open Elective Courses-I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OEC-ECE-417</td>
<td>Renewable Energy Resources</td>
</tr>
<tr>
<td>2</td>
<td>OEC-CE-417</td>
<td>Disaster Management</td>
</tr>
<tr>
<td>3</td>
<td>OEC-CE-402</td>
<td>Solid & Hazardous waste management</td>
</tr>
<tr>
<td>4</td>
<td>OEC-ME-410</td>
<td>Quality Engineering</td>
</tr>
<tr>
<td>5</td>
<td>OEC–EE-412</td>
<td>Electrical Power Generation</td>
</tr>
</tbody>
</table>
Course code: PCC-ECE-401

Category: Professional Core Course

Course title: Fiber Optical Communication

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Semester 7th</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Class work: 25 Marks

Exam: 75 Marks

Total: 100 Marks

Duration of Exam: 3 Hours

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objectives:
During the duration of the course, students will be made to learn to:
1. Understand the working principles of the Optical communication systems.
2. Understand the optical networks and characteristics of elements used for communication.
3. Understand modulation schemes and their utility for different networks.
4. Analyze planning/budgeting of optical communication systems.

Unit – I

Unit – II

Unit – III

Unit – IV
System Effects: Nonlinear effects in fiber optic links. Concept of selfphase modulation, four wave mixing, Kerr effect. Soliton based communication system.
TEXT BOOK:
1. Optical Fiber Communications: John M Senior; Pearson.
2. Optical Fiber Communication: Satinder Bal Gupta, Ashish Goel, University Science Press,

REFERENCE BOOKS:
1. Optical Communication Systems: John Gowar; PHI.
2. Optical Fiber Communications: Gerd Keiser; TMH

Course Outcomes:
At the end of the course, students will demonstrate the ability to:
1. To explain the theory of optical communication.
2. To explain the various elements used and development in the field.
3. Various losses accrued by the fiber cable and link budgeting.
4. Working of amplifiers and there utilities.
Course code: PCC-ECE-402

Category: Professional Core Course

Course title: Antennas and Propagation

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Semester 7th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class work</td>
<td>03</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Exam</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>3 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objectives:
During the duration of the course, students will be made to learn to:
1. Understand the working principles of the Antenna.
2. Understand the types of Antenna and their propagation.
3. Understand limitations and application for different networks.

Unit – I
Fundamental Concepts-Physical concept of radiation, Radiation pattern, near-and far-field regions, reciprocity, directivity and gain, effective aperture, polarization, input impedance, efficiency, Friis transmission equation, radiation integrals and auxiliary potential functions. Radiation from Wires and Loops-Infinite smal dipole, finite-length dipole, linear elements near conductors, dipoles for mobile communication, small circular loop.

Unit – II
Aperture and Reflector Antennas-Huygens’ principle, radiation from rectangular andcircularapertures,designconsiderations,Babinet'sprinciple,Radiationfromsectoraland pyramidalhorns,designconcepts,prime-focusparabolicreflectorandcassegrainantennas

Unit – III

Unit – IV

Text/Reference Books:

Course Outcome:
After completing this course, students should be able:

1. Understand the properties and various types of antennas.
2. Analyze the properties of different types of antennas and their design.
3. Operate antenna design software tools and come up with the design of the antenna of required specifications.
Course code: PEC-ECE-409

Category: Professional Elective-III

Course title: Wireless Communication

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03</td>
<td>03</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 7th

Class work: 25 Marks

Exam: 75 Marks

Total: 100 Marks

Duration of Exam: 3 Hours

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objectives:
During the duration of the course, students will be made to learn to:
1. Identify and discuss the fundamental operational and design problems of wireless communication systems.
2. Apply basic techniques to design radio links and basic communication systems.
3. Discuss basic technical standards related to 2G/3G/4G wireless systems.
4. Discuss basic technical standards related to WiFi.

UNIT I

UNIT II

UNIT III
Multiple access techniques in wireless communication: contention-free multiple access schemes (FDMA TDMA, CDMA, SDMA and Hybrid)

UNIT IV
Diversity Techniques-Polarization Diversity, Frequency Diversity, Time Diversity, Practical
Space Diversity Consideration—Selection Diversity, Feedback or Scanning Diversity, Maximal Ratio Combining, Equal Gain Combining, spatial multiplexing, MIMO and space-time signal processing.

Text Books/Reference Books

Course Outcomes:
At the end of the course the students will be able to
1. Demonstrate their understanding on functioning of wireless communication system and evolution of different wireless communication systems and standards
2. Learn to model radio signal propagation issues and its impact on communication system performance.
3. Explain the architecture, functioning, protocols, capabilities and application of various wireless communication networks
Course code | PEC-ECE-413
---|---
Category | Professional Elective Course
Course title | Wireless Sensor Networks

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7th</td>
<td>03</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Class work | 25 Marks
Exam | 75 Marks
Total | 100 Marks
Duration of Exam | 3 Hours

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objectives:
During the duration of the course, students will be made to learn to:

1. Understand the working principles of the Sensors.
2. Understand the protocols used in sensor networks.

Unit – I

Unit – II
Routing protocols, MAC protocols: Classification of MAC Protocols, S-MAC Protocol, B-MAC protocol, IEEE802.15.4standardandZigBee

Unit – III
Dissemination protocol for large sensor network. Data dissemination, data gathering, and data fusion; Quality of a sensor network; Real-time traffic support and security protocols. Design Principles for WSNs, Gateway Concepts Need for gateway, WSN to Internet Communication ,and Internet to WSN Communication

Unit – IV
Single-node architecture, Hardware components & design constraints, Operating systems and execution environments, introduction to Tiny OS andnes C

Text/Reference Books:

Course Outcome:
After completing this course, students should be able:

1. Design wireless sensor networks for a given application
2. Understand emerging research areas in the field of sensor networks
3. Understand MAC protocols used for different communication standards used in WSN
4. Explore new protocols for WSN
Course code | PEC-ECE-410
---|---
Category | Professional Elective Course
Course title | Mobile Communication and Networks

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Semester 7th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class work</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Exam</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Duration of Exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objectives:
During the course, students will be made to learn to:
1. Understand the Cellular concepts.
2. Understand the digital modulation techniques.
3. Understand the mobility in Cellular Systems.

UNIT I
Cellular concepts-
Cell structure, frequency reuse, cell splitting, channel assignment, handoff, interference, capacity, power control; Wireless Standards: Overview of 2G and 3G cellular standards.

UNIT II
Large scale signal propagation. Fading channels-Multipath and small scale fading-Doppler shift, doppler spread, average and rms delay spread, coherence bandwidth and coherence time, flat and frequency selective fading, slow and fast fading, average fade duration and level crossing rate. Okumura Model, Hata Model, PCS Extension to Hata Model, Walfisch and Bertoni Model, Wideband PCS Microcell Model, Indoor Propagation Models-Partition losses (Same Floor), Partition losses between Floors, Log-distance path loss model.

UNIT III
Multiple access schemes-FDMA, TDMA, CDMA and SDMA. Modulation schemes-BPSK, QPSK and variants, QAM, MSK and GMSK, multi carrier modulation, OFDM and OFDMA.

UNIT IV
Mobility in Cellular Systems: The Gateway Concept, Measurement Reports, Mobility Procedures - Mobile IP: Basic Components, Tunneling
Text/Reference Books:

Course Outcome:
After completing this course, students should be able:

1. Understand the working principles of the mobile communication systems.
2. Understand the relation between the user features and underlying technology.
3. Analyze mobile communication systems for improved performance.
Course code: PEC-ECE-403

Category: Professional Elective Course

Course title: SATELLITE COMMUNICATION

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Semester 7th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class work</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Class work: 25 Marks

Exam: 75 Marks

Total: 100 Marks

Duration of Exam: 3 Hours

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objective:
1. Study the Satellite Communication Procedure.
2. Understand the analog and digital satellite communication.
3. Study the satellite link design.
4. Study the satellite orbits.

UNIT-I
PRINCIPLES OF SATELLITE COMMUNICATION: Evolution & growth of communication satellite, Synchronous satellite, Satellite frequency allocation & Band spectrum, Advantages of satellite communication, Active & Passive satellite, Applications of satellite communication, Block diagram of transponder and Earth Station, Satellite communication with respect to Fiber Optic Communication.

COMMUNICATION SATELLITE LINK DESIGN: Introduction, General link design equations, System noise temperature, C/N & G/T ratio, Atmospheric & Ionospheric effects on link design, Complete link design.

UNIT-II
ANALOG SATELLITE COMMUNICATION: Introduction, Baseband analog(Voice) signal, FDM techniques, S/N & C/N ratio in frequency modulation in satellite link, S/N ratio in FM with multiplexed telephone signal in satellite link, Single channel per carrier(SCPC) systems, Analog FM/FDM TV satellite link, Energy disposal in FM/FDM systems.

DIGITAL SATELLITE COMMUNICATION: Advantages of digital communication, Elements of digital satellite communication systems, Digital baseband signals, Digital modulation techniques like MSK, QAM, QPSK.

UNIT-III
MULTIPLE ACCESS TECHNIQUES: Introduction, TDMA, TDMA-Frame structure, TDMA- Burst structure, TDMA-Frame efficiency, TDMA- Superframe, TDMA Frame acquisition & Synchronization, TDMA compared to FDMA, TDMA Burst Time Plan. FDMA- FDM/FM/FDMA, Preassigned FDMA, Demand assigned FDMA, Spade System, Limitations of FDM/FM/FDMA, Comparison of TDMA and FDMA.

SATELLITE ORBITS: Introduction, Kepler’s laws, Synchronous orbit, Orbital parameters, Satellite location with respect to earth, Look angles, Earth coverage & slant range, Eclipse effect, station keeping, Satellite stabilization, Geostationary and other orbits, Mechanism of launching a satellite.

UNIT-IV
SPECIAL PURPOSE COMMUNICATION SATELLITES: BDS, INMARSAT, INTELSAT, VSAT(data broadband satellite), MSAT(Mobile Satellite Communication technique), Sarsat (Search & Rescue satellite) & LEOs (Lower earth orbit satellite), LANDSAT, Defence satellite.
LASER SATELLITE COMMUNICATION: Introduction, Link analysis, Optical satellite link transmitter, Optical satellite link receiver, Satellite Beam Acquisition, Tracking & Positioning.

TEXT BOOK/REFERENCE BOOK:

Course Outcomes:
At the end of this course students will demonstrate the ability to
1. Visualize the architecture of satellite systems as a means of high speed, high range communication system.
2. State various aspects related to satellite systems such as orbital equations, sub-systems in a satellite, link budget, modulation and multiple access schemes.
3. Solve numerical problems related to orbital motion and design of link budget for the given parameters and conditions.
<table>
<thead>
<tr>
<th>Course code</th>
<th>PEC-ECE-412</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Professional Elective Course</td>
</tr>
<tr>
<td>Course title</td>
<td>Error Correcting Codes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7th</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Class work 25 Marks
Exam 75 Marks
Total 100 Marks
Duration of Exam 3 Hours

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objectives:

During the course, students will be made to learn to:

4. Understand the encoding and decoding concept of the various codes.
5. Understand that using coding techniques how we improve the efficiency of communication system.
6. Understand various properties of different codes and how implements on different application.

UNIT I

Concept of information and entropy, Shannon theorem, Relation among Different entropies, Mutual information and self-information, channel capacity of different channels, Basic conception of coding, Advantage of coding, Source encoding and channel coding.

UNIT II

Linear block codes: introduction to linear block code. Syndrome and error detection. Minimum distance of block code, Error detecting and error correcting capabilities of a block code, Hamming codes. Application of block codes for error control in data storage system.

UNIT III

Cyclic Codes: Description, Generator and parity check matrices, encoding, Syndrome computation and error detection, decoding, cyclic hamming codes, Shortened cyclic codes, error trapping decoding for cyclic codes. BCH codes, Decoding of BCH codes. Idempotent and Mattson-Solomon polynomials; Reed-Solomon codes, MDS codes.

UNIT IV

Convolution codes: Encoding of convolutional codes, state diagrams, Trellis Diagram, structural and distance properties, Maximum likelihood decoding, sequential decoding algorithm, Application of convolutional codes in ARQ system. Introduction to Space time codes, Diversity, orthogonal space – time block codes.

Text/Reference Books:

Course Outcomes:

At the end of the course, students will demonstrate the ability to:
1. Understand the error sources
2. Understand error control coding applied in digital communication
Course code: PEC-ECE-404

Category: Professional Elective Course

Course title: Microwave Theory and Techniques

Scheme and Credits

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Semester 7th</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Class work: 25 Marks
Exam: 75 Marks
Total: 100 Marks
Duration of Exam: 3 Hours

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objective:
1. An understanding of microwave waveguides, passive & active devices, tubes and network analysis.
2. An ability to design microwave matching networks.
3. An ability to perform microwave measurements.

UNIT: I
WAVEGUIDES:
Introduction to Microwaves-History of Microwaves, Microwave Frequency bands; Applications of Microwaves: Civil and Military, Medical, EMI/ EMC. comparison with transmission lines, propagation in TE & TM mode, rectangular wave guide, TEM mode in rectangular wave guide, characteristic impedance, introduction to circular waveguides and planar transmission lines.

UNIT: II
MICROWAVE COMPONENTS:
Directional couplers, tees, hybrid ring, S-parameters, attenuators, cavity resonators, mixers& detectors, matched Load, phase shifter, wave meter, and Ferrite devices: Isolators, circulators.

MICROWAVE TUBES:
Limitation of conventional tubes; Construction, operation and properties of Klystron amplifier, reflex Klystron, magnetron, TWT, BWO, crossed field amplifiers.

UNIT: III
MICROWAVE SOLID STATE DEVICES:
Varactor diode, Tunnel diode, Schottky diode, GUNN diode, IMPATT, TRAPATT and PIN diodes. MASER, parametric amplifiers.

MICROWAVE MEASUREMENTS:
Power measurement using calorimeter & bolometers, measurement of SWR, frequency wavelength and impedance. Microwave bridges

UNIT: IV
MICROWAVE SYSTEMS:
Medical and Civil applications of microwaves, Electromagnetic interference and Electromagnetic Compatibility (EMI & EMC), Monolithic Microwave ICs, RFMEMS for microwave components, Microwave Imaging.

TEXT BOOKS:
1. Samuel Liao, Microwave devices and circuits, PHI
2. M. Kulkarni, Microwave devices & Radar Engg, Umesh
4. K.C. Gupta and I.J. Bahl, Microwave Circuits, Artech house

REFERENCE BOOK:
1. Microwaves and Radar : A.K. Maini; Khanna

Course Outcomes:
The student after undergoing this course will be able to:
1. Explain different types of waveguides and their respective modes of propagation.
2. Analyze typical microwave networks using impedance, admittance, transmission and scattering matrix representations.
3. Design microwave matching networks using L section, single and double stub and quarter wave transformer.
4. Explain working of microwave passive circuits such as isolator, circulator, Directional couplers, attenuators etc.
5. Describe and explain working of microwave tubes and solid state devices.
Course code: PEC-ECE-414

Category: Professional Elective Course

Course title: Radar & Sonar Engineering

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Semester 7th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class work</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of Exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 Hours</td>
</tr>
</tbody>
</table>

Class work: 25 Marks
Exam: 75 Marks
Total: 100 Marks

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objectives:
During the course, students will be made to learn to:
1. Understand the working principles of the Radar and Sonar.
2. Understand the types of Radars and their applications.
3. Understand limitations and latest development in Radar technology.

Unit – I
Introduction: Radar basic block diagram, operation, working principle, frequency used. Evolution of Radar technology and its application in various fields with historical prospective

Unit – II

Unit – III
MTI and Pulse Doppler Radar: Introduction, Delay Line Cancellors, Multiple or staggered, Pulse repetition frequencies, range-Gated Doppler Filters, Digital Signal Processing, Other MTI delay line, Limitation of MTI performance, Non-coherent MTI, Pulse Doppler Radar, MTI from a moving platform. Tracking in Radar: Tracking with Radar, Sequential Lobbing, Conical Scan, Monopulse Tracking Radar, Tracking in range, Acquisition.

Unit – IV
Receivers, Display & Duplexers: Radar Receivers, Noise Figure, Mixer, Low-noise Front ends, Displays, Duplexer, Receiver protectors. Introduction to SONAR: Working principle, propagation, transmission and reception of signals. Signal to Noise Ration, types of Sonar and their applications.
TEXT BOOK:
1. Introduction to Radar Systems: Merrill I. Skolnik, ; MGH

REFERENCE BOOK:
1. Electronic Communication Systems : Kennedy; TMH

Course Outcome:
After completing this course, students should be able:

1. Explain working principles of the Radar and Sonar.
2. Explain availability of various types of Radars and their applications.
3. Explain optimum utilization of Radar and Sonar technology.
Course code | PEC-ECE-411
---|---
Category | Professional Elective Course
Course title | Data Communication Networking & Security

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7th</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Class work 25 Marks
Exam 75 Marks
Total 100 Marks

Duration of Exam 3 Hours

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objectives:
During the course, students will be made to learn to:
1. Understand the working principles of Data Communication.
2. Understand the Data link layer.
3. Understand the network security.

UNIT I
Overview of Data Communication and Networking: Data communications, Uses of computer Networks, The Internet, Protocols and standards, Layered tasks, OSI model, TCP/IP model.

UNIT II

UNIT III
Transport layer: Process to process delivery, Elements of transport protocols, User datagram protocol (UDP), Transmission control protocol (TCP), Data traffic, Congestion, Congestion control, Quality of service, Techniques to improve QOS, Integrated services, Differentiated services, QOS in switched networks.

UNIT IV
Application layer: DNS-Domain Name System, Electronic mail, File transfer, HTTP, World wide web (WWW), Digitizing audio and video, Audio and video compression, Voice over IP.
Network Security: Cryptography, Symmetric key Algorithms (DES, AES), Public key Algorithms-RSA, Digital Signatures, Firewall

Text Books/Reference Books:
1. Data Communication and Networking by Behrouz A. Forouzan (Fourth Edition), Tata
2. Computer Networks by Andrew S. Tanenbaum (Fifth Edition), Pearson Education
3. Introduction to Data communications and Networking, W. Tomasi, Pearson Education

Course Outcomes:
1. Describe the technical aspects of data communications on the Internet
2. Analyze error detection/correction and flow control of data in the data network
3. Configure the network component and assign IP address.
Course code: PEC-ECE-415
Category: Professional Elective Course
Course title: Embedded Systems

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Semester 7th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class work</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Exam</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>03 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objective:

1. To introduce students to the microcontroller and embedded system and applications.
2. To make understand the architecture of PIC and 8051 microcontrollers in detail.
3. To provide knowledge about the embedded system and interfacing.

UNIT I

UNIT II
MICROCONTROLLER ARCHITECTURE: Introduction to PIC microcontrollers, Architecture and pipelining, program memory considerations, Addressing modes, CPU registers, Instruction set, simple operations.

UNIT III

UNIT IV
Embedded Systems- Introduction, Classification, Processors, Hardware Units, Software Embedded into System, Applications and Products of Embedded Systems, Structural Units in Processor, Memory Devices, I/O Devices, Buses, Interfacing of Processor Memory and I/O Devices, Case Study of an Embedded System for a Smart Card.

TEXT BOOKS:

1. B. B. Brey: The Intel Microprocessors, Architecture, Programming and Interfacing, Pearson Education.
4. V. Udayashankara and M. S. Mallik arjunaswamy: 8051 Microcontroller, TMH, New Delhi

REFERENCE BOOKS:
2. A. V. Deshmukh: Microcontroller (Theory and Application), TMH.
3. D. V. Hall: Microprocessors and Interfacing, TMH
4. Programming and Customizing the 8051 Microcontroller: Predko; TMH.
5. Programming Embedded Systems in C and C++: Michael Barr; SHROFF PUB. & DISTR

COURSE OUTCOMES:
After the completion of the course the student will be able to:

1. To gain the knowledge about Microcontroller and its need.
2. To learn and understand the basic architecture of different Microcontroller 8051.
3. Foster ability to write the programming using 8051 microcontrollers.
4. To learn and understand the internal architecture and interfacing of different peripheral devices with 8051 Microcontrollers.
5. Ability to understand the role of Embedded systems in the industry.
6. To understand the design concept of Embedded systems.
Course code | LC-ECE-405
---|---
Category | Laboratory Course
Course title | Data Communication Networking Lab

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 7th</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Class work | 25 Marks
Exam | 25 Marks
Total | 50 Marks
Duration of Exam | 3 Hours

List of Experiments (Perform any 10 experiments)

1. Overview of Boson Simulator or Cisco Packet Tracer or Netsim and Matlab
2. To study various network topologies
3. To study network components and categories of networks
4. Experiment for various keying techniques like ASK, FSK, PSK and QAM
5. Describe various techniques for Encoding, decoding and Digital data communication.
6. Experiment with various error detection and flow control techniques
7. To study the connections of hubs, switchers and routers.
8. To establish connections of LAN, MAN and WAN
9. To learn and observe the usage of different networking commands e.g. PING, TRACEROUTE. Learning remote login using telnet session. Measuring typical average delays between different locations of the network.
10. Observe the need for router configuration. To compare the working of 1750, 2620 and 2621 series of routers on the basis of bandwidth
11. Understand the subnet mask.
12. Understand the need of a routing mechanism in a router.
13. Learn how to configure a router with the static routing.
14. To observe the working of IP protocol. Exploring the routing tables for different routers.
15. Observe how the TCP/IP applications (e.g., DNS, Telent, FTP) exchange the control information and data.
16. Experiment with various application layer protocols

Course Outcome

1. Student will have the basic knowledge of computer network
2. The student will be having the basic knowledge of data sharing, transmission media and their protocol
Course Objectives: Students will be able to:

1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
2. To address the growth of Indian opinion regarding modern Indian intellectuals’ constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
3. To address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Unit – I
Philosophy of Indian Constitution: Salient features of Indian Constitution, Preamble, and Nature of Indian Constitution, Procedure for amendment of the Constitution.

Unit – II
Federal structure and distribution of legislative and financial powers between the Union and the States

Unit – III

Unit – IV
Fundamental Rights: Origin and development of Fundamental rights, Need for fundamental rights. Introduction to Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and Education rights and Fundamental duties.

References:
1. The Constitution of India, 1950 (Bare Act), Government Publication.
2. Dr. S.N. Busi, Dr. B.R. Ambedkar framing of Indian Constitution, latest Edition

Course Outcomes:
After completing this course, students should be able:

1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
2. Discuss the intellectual origins of the framework of argument that informed the
conceptualization of social reforms leading to revolution in India.

3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.

MC-317G is mandatory non-credit course in which the students will be awarded grades.

Note: 1. The evaluation of Constitution of India. According to performance, the students are awarded grades A, B, C, F. A student who is awarded F grade is required to repeat Constitution of India: Excellent: A; Good: B; Satisfactory: C; Not Satisfactory: F.

Note: 2. The evaluation of Practical Training-I will be based on seminar, viva voce, report submitted by the students. According to performance, the students are awarded grades A, B, C, F. A student who is awarded F grade is required to repeat
Course code: OEC-ECE-417
Category: Open Elective course
Course title: Renewable Energy Resources

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Semester 7th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class work</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Exam</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of Exam</td>
<td>03 Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Course Objective:
1. Study the various Renewable Energy Resources.
2. Understand the working principles of generation of electricity by Renewable Energy.

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

Text/Reference Books:

Course Outcomes:

After completion of course the students will be able to understand the use of Renewable Energy Resources and their advantages.
COURSE OBJECTIVES:
- To provide basic conceptual understanding of disasters and its relationships with development.
- Provide an understanding of the social nature of natural hazards and disasters
- Increase awareness of hazards and disasters around the world and the unequal social consequences stemming from disaster events.

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 6 parts of 2.5 marks each from all units and remaining eight questions of 15 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each unit.

Unit-I
Module 1: Introduction
Definition of Disaster, hazard, Global and Indian scenario, role of engineer, importance of study in human life, long term effects of disaster. Geological Mass Movement and land disasters, Disaster Mitigation

Unit-II
Module 2: Natural Disaster
Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion

Module 3: Man-made Disasters
Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.

Unit -III
Module 4: Case Studies
Damage profile analysis- Uttarkashi/Bhuj/Latur earthquakes. Forest Related disasters, Mining disasters, Atmospheric disasters.

Unit IV
Module 5: Disaster Management
Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Use of Internet and software for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.
COURSE OUTCOMES:

After completing this course, students should be able:

1. To know natural as well as manmade disaster and their extent and possible effects on the economy.
2. To Plan national importance structures based upon the previous history.
3. To acquaint with government policies, acts and various organizational structures associated with an emergency.
4. To know the simple dos and don’ts in such extreme events and act accordingly.

Reference Books

- Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
Solid & Hazardous waste management

<table>
<thead>
<tr>
<th>Course Code</th>
<th>OEC –CE-402</th>
<th>External Marks: 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
<td>Internal Marks: 25</td>
</tr>
<tr>
<td>L-T-P</td>
<td>3-0-0</td>
<td>Total Marks: 100</td>
</tr>
</tbody>
</table>

Duration of Examination: 3h

COURSE OBJECTIVES:

- To understand the sources of solid and hazardous wastes.
- To understand methods of solid and hazardous waste disposal.
- To gain knowledge of E-Waste management.

Note: Examiner will set 9 questions in total, with two questions from each section and one question covering all the section which will be Q. 1. Question number 1 will be compulsory and of short answer type. Each question carries equal marks (15 marks). Students have to attempt five questions in total by selecting one question from each section.

Unit I

Module: 1 Sources and Composition of Municipal Solid Waste

Introduction, Sources and Types of solid waste, Composition of Solid Waste and its Determination, Properties of Municipal Solid Waste

Module: 2 Solid Waste Generation and Collection

Quantities of Solid Waste, Measurements and methods to measure solid waste quantities, Solid waste generation and collection, Factors affecting solid waste generation rate, Quantities of materials recovered from MSW.

Unit II

Module: 3 Handling, Separation and Processing of Solid Waste

Handling and separation of solid waste at site- Material separation by pick in, screens, float and separator magnets and electromechanical separator and other latest devices; Waste handling and separation at Commercial and industrial facilities, Processing of solid waste at residence, Commercial and industrial site - Storage, conveying, compacting, Shredding, pulping, granulating etc.

Module: 4 Disposal of Municipal Solid Waste

Landfill: Classification, planning, siting, permitting, landfill processes, landfill design, landfill operation, use of old landfill; Combustion and energy recovery of municipal solid waste, effects of combustion, undesirable effects of Combustion
Unit III

Module: 5 Hazardous Waste Management

Module: 6 Biological Treatment of Solid and Hazardous Waste

Composting; bioreactors; anaerobic decomposition of solid waste; principles of biodegradation of toxic waste; inhibition; co-metabolism; oxidative and reductive processes; slurry phase bioreactor; in-situ remediation.

Unit IV

Module: 7 Radioactive Waste Management

Fundamentals Sources, measures and health effects; nuclear power plants and fuel production; waste generation from nuclear power plants; disposal options.

Module: 8 Electronic waste management

E waste- Definition, composition; environmental and human health issues, recovery of metals from E waste, E waste management,

COURSE OUTCOMES:

After completing this course, students should be able:

- To realize the significance of solid and hazardous waste management in today life
- To understand the processes involved in solid and hazardous waste management
- To comprehend the techniques for various waste management
- To appreciate the role of common/integrated waste management plants

Suggested Books:

Course code	OEC-ME-410
Category | Open Elective Courses (OEC)
Course title | QUALITY ENGINEERING

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Semester-VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objectives: To understand the concept of Quality Engineering which emphasizes growth, creativity, and analytical thinking.

Class work	25 Marks
Exam | 75 Marks
Total | 100 Marks
Duration of Exam | 03 Hours

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 10 parts of 2.5 marks from all units and remaining eight questions of 12.5 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each Unit.

Section A
Basic Concepts of Quality: Definitions of Quality and its importance in industry, Quality function, Quality Characteristics, Quality process, Quality Traits, Applications of Quality Concept, Introduction to quality control, Computer aided quality control, Total quality control (TQC) and its implementation, Elements of TQC, Quality Circle, Objectives of quality circle, Role of management in quality circle, Quality in service organizations, characteristics of a service organization, Important service dimensions, Design of service quality.

Section B
Basic Statistical Concepts: The Concept of variation, Distinction between variables and attributes data, The frequency distribution, graphical representation of frequency distribution, Quantitative description of distribution, the normal curve, concept of probability, laws of probability, probability distributions, hyper geometric distribution, binomial distribution, The Poisson distribution.

Section C

Section D
Total Quality Management: Introduction o TQM, Concepts, Characteristics of TQM, Relevance of TQM, Approaches to TQM Implementation, TQM philosophies, Taguchi Philosophy, JIT, Kaizen, Six Sigma approach, 5-S approach

Course Outcomes:

Upon completion of this course the student will be able to:
CO1 - Attain the basic techniques of quality improvement, fundamental knowledge of statistics and probability
CO2 - Use control charts to analyze for improving the process quality.
CO3 - Describe different sampling plans
CO4 - Acquire basic knowledge of total quality management
CO5 - Understand the modern quality management techniques

Text Books:
1. Quality planning and Analysis, Juran and Gryna, TMH, New Delhi
2. Quality Management, Kanishka Bed, Oxford University Press, New Delhi
3. Introduction to SQC, Montgomery DC, 3e, Wiley, New Delhi

Reference Books:
Course code	OEC – EE-412
Category | Open Elective Courses (OEC)
Course title | ELECTRICAL POWER GENERATION

<table>
<thead>
<tr>
<th>Scheme and Credits</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
<th>Semester-VII</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Objectives:
The aims of Electrical power generation include: The aim of subject is to get knowledge about power generation and its related issues.

Class work | 25 Marks
Exam | 75 Marks
Total | 100 Marks
Duration of Exam | 03 Hours

Note: Examiner will set nine questions in total. Question one will be compulsory. Question one will have 10 parts of 2.5 marks from all units and remaining eight questions of 12.5 marks each to be set by taking two questions from each unit. The students have to attempt five questions in total, first being compulsory and selecting one from each Unit.

Section-A

Section-B
POWER GENERATION PLANNING: Load forecasting, load curves, load duration curve, Base load and Peak load Power Plants, connected Load, maximum demand, demand factor, Group diversity factor, load factor, significance of load factor, plant factor, capacity factor, selection of unit size, No. of Units, reserves, cost of power generation, Depreciation, tariff.

Section-C
CONVENTIONAL ENERGY SOURCES: Selection of site, capacity calculations, classification, Schematic diagram and working of Thermal Power Stations, Hydro Electric Plant, Nuclear Power Plant and Diesel Power Stations.

Section-D

TEXT BOOKS:
1. Electric Power Generation, B.R. Gupta

REF. BOOKS:
1. A Course in Electric Power System, Soni, Gupta, Bhatnagar, Dhanpat Rai & Sons
3. Power Plant Engg: G.D. Rai
4. Electric Power: S.L. Uppal (Khanna Publishing)